Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidation aromatic, heterogeneous catalysis

Clerici, M.G. and Kholdeeva, O.A. (eds) (2013) Liquid Phase Oxidation via Heterogeneous Catalysis Organic Synthesis and Industrial Applications, John Wiley Sons, Inc., Hoboken. Bruckner, A. and Baems, M. (1997) Selective gas-phase oxidation of polycyclic aromatic hydrocarbons on vanadium oxide-based catalysts. Appt Catal. A- Gen., 157 (1-2), 311-334. Corma, A., Esteve, P., and Martinez, A. (1996) Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst the influence of the hydrophilicity-hydrophobicity of the zeolite. /. Catal, 161 (1), 11-19. [Pg.494]

Our own group is also involved in the development of domino multicomponent reactions for the synthesis of heterocycles of both pharmacologic and synthetic interest [156]. In particular, we recently reported a totally regioselective and metal-free Michael addition-initiated three-component substrate directed route to polysubstituted pyridines from 1,3-dicarbonyls. Thus, the direct condensation of 1,3-diketones, (3-ketoesters, or p-ketoamides with a,p-unsaturated aldehydes or ketones with a synthetic equivalent of ammonia, under heterogeneous catalysis by 4 A molecular sieves, provided the desired heterocycles after in situ oxidation (Scheme 56) [157]. A mechanistic study demonstrated that the first step of the sequence was a molecular sieves-promoted Michael addition between the 1,3-dicarbonyl and the cx,p-unsaturated carbonyl compound. The corresponding 1,5-dicarbonyl adduct then reacts with the ammonia source leading to a DHP derivative, which is spontaneously converted to the aromatized product. [Pg.262]

Correlations between catalytic activity and a variety of bulk properties of semiconductors have been reported (i) the average band gap of III-V and II-VI semiconductors and activity towards hydrogenation of isopropanol (ii) enthalpy of oxides and their activity towards oxidation of propylene and (iii) number of d-electrons (and crystal field stabilization energy) or 3rf-metal oxides and their activity towards N2O decomposition. The last correlation, due to Dowden (1972), is important since it provides a connection between heterogeneous catalysis and coordination chemistry of transition-metal compounds. A correlation between the catalytic activity of transition-metal sulphides towards hydrodesulphurization of aromatic compounds and the position of the transition metal in the periodic table has been made by Whittingham ... [Pg.519]

Platinum oxide-Fe or Cu-containing catalysts allow hydrogenation of furfural to furfurylalcohol". Ruthenium catalysts (Ru—C, RuOj) are successful in this specific case they have an activity well preserved through reuses. Otherwise Ru exhibits little activity in the heterogeneous hydrogenation of aromatic aldehydes. Other heterogeneous catalysis include platinized (PtC ) Raney Ni and copper chromite. [Pg.249]

Heterogeneous catalysis is especially important in industry. Some of the major industrial processes that use solid catalysts include the synthesis of inorganic chemicals such as NH3, SO3 and NO, the various reactions used in the refining of crude petroleum such as cracking, isomerisation and reforming, and many of the major reactions of the petrochemical industry, such as the synthesis of methanol, the hydrogenation of aromatics and various controlled oxidations. Some of the major industrial processes to be catalysed by inorganic solids are shown in Table 1.3. [Pg.10]

Direct formation of isolable cr-aryl complexes by intermolecular oxidative addition of an aromatic C—H bond to a transition-metal complex was first observed in an alkyl phosphine complex of Ru and has now been extended to most of the transition metals. The relevant literature is summarized in Table 1. There are reviews of C—H activation by homogeneous metal complexes and its relevance to homogeneous and heterogeneous catalysis s " . [Pg.213]

Attenlion should be drawn to ihe use of tin oxide systems as heterogeneous catalysts. The oldest and mosi extensively patented systems are the mixed lin-vanadium oxide catalysis for the oxidation of aromatic compounds such as benzene, toluene, xylenes and naphthalene in the. synthesis of organic acids and acid anhydride.s. More recenily mixed lin-aniimony oxides have been applied lo the selective oxidaiion and ammoxidaiion of propylene to acrolein, acrylic acid and acrylonilrile. [Pg.385]

Benzylic oxidation of aromatic side-chains is also a well established technology in the bulk chemicals arena, e. g. toluene to benzoic acid and p-xylene to ter-ephthalic acid [1,2]. These processes involve homogeneous catalysis by, e. g., cobalt compounds, however, and also fall outside the scope of this book. Ammoxi-dation of methyl-substituted aromatic and heteroaromatic compounds is performed over heterogeneous catalysts in the gas phase but this reaction is treated elsewhere (Section 9.5). Transition metal-substituted molecular sieves have been widely studied as heterogeneous catalysts for oxidation of aromatic side-chains in the liquid phase, but there are serious doubts about their heterogeneity [5,6]. Here again, a cursory examination of the literature reveals that supported palladium seems to be the only heterogeneous catalyst with synthetic utility [4]. [Pg.519]


See other pages where Oxidation aromatic, heterogeneous catalysis is mentioned: [Pg.118]    [Pg.320]    [Pg.3]    [Pg.611]    [Pg.270]    [Pg.201]    [Pg.325]    [Pg.256]    [Pg.48]    [Pg.81]    [Pg.277]    [Pg.133]    [Pg.74]    [Pg.11]    [Pg.391]    [Pg.345]    [Pg.497]    [Pg.499]    [Pg.263]    [Pg.128]    [Pg.2]    [Pg.819]    [Pg.226]    [Pg.65]    [Pg.546]    [Pg.283]    [Pg.529]    [Pg.841]    [Pg.204]    [Pg.1491]    [Pg.42]    [Pg.325]    [Pg.64]   
See also in sourсe #XX -- [ Pg.324 ]




SEARCH



Aromatic oxidation

Aromatics oxidation

Aromatization, oxidative

Catalysis heterogenized

Catalysis heterogenous

Catalysis, heterogenic

Heterogeneous catalysis

Oxidation catalysis

Oxidation heterogeneous

Oxides catalysis

© 2024 chempedia.info