Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Overall process

The various stages of this process depend critically on the type of gas, its pressure, and the configuration of the electrodes. (Their distance apart and their shapes control the size and shape of the applied electric field.) By controlling the various parameters, the discharge can be made to operate as a corona, a plasma, or an arc at atmospheric pressure. All three discharges can be used as ion sources in mass spectrometry. [Pg.43]

Under suitable conditions of pressure and other factors, application of a suitable voltage between electrodes immersed in a gas causes a discharge of electric current through the gas. Different [Pg.43]

An overview of the three chlor-alkali technologies is presented in this chapter, and the process details are addressed in Volumes II and HI. The terminology and the overall processes discussed in this chapter should enable the reader to relate the process steps to the electrochemical and chemical engineering principles discussed in Chapters 4 and 10. [Pg.37]

As stated in Chapter 2, chlorine and caustic soda are produced by the electrolysis of sodium chloride solutions. The electrical enei required to operate the electrolytic cells constitutes a major portion of the operating cost in producing chlorine. The current efficiency of the electrolyzers can be as high as 98% or as low as 85%, depending on the technology used, the operation of the electrolyzers, and the purity of the brine used in the process. Schematics of the cell technologies are shown in Fig. 3.1. [Pg.37]

FIGURE 3.1. Schematics of mercury, diaphragm, and membrane chlor-alkali cells. [Pg.38]

Mercury Cells. The mercury cell has a steel bottom with rubber-coated steel sides, as well as the boxes for brine and mercury feed and exit streams, with a flexible rubber or rubber-lined steel cover. Horizontal, adjustable metal anodes hang from the top, and mercury flows on the inclined bottom. The current flows from the steel bottom to the flowing mercury. [Pg.38]

all three basic cell technologies for producing chlorine generate chlorine at the anode, and hydrogen along with NaOH or KOH at the cathode. The distinguishing diiference lies in the manner in which the anolyte and the catholyte are prevented from [Pg.39]


Smith, R., and Linnhoff, B., The Design of Separators in the Context of Overall Processes, Trans. IChemE, ChERD, 66 195, 1988. [Pg.14]

In describing reactor performance, selectivity is usually a more meaningful parameter than reactor yield. Reactor yield is based on the reactant fed to the reactor rather than on that which is consumed. Clearly, part of the reactant fed might be material that has been recycled rather than fresh feed. Because of this, reactor yield takes no account of the ability to separate and recycle unconverted raw materials. Reactor yield is only a meaningful parameter when it is not possible for one reason or another to recycle unconverted raw material to the reactor inlet. By constrast, the yield of the overall process is an extremely important parameter when describing the performance of the overall plant, as will be discussed later. [Pg.25]

Reactors in the overall process. It should be emphasized that many considerations other than those represented in Figs. 2.9, 2.10, and 2.11 also influence the decision on the choice of reactor. Safety considerations, operating pressure, materials of construction, etc. have a considerable effect on the outcome. [Pg.64]

No attempt should be made to optimize pressure, reflux ratio, or feed condition of distillation in the early stages of design. The optimal values almost certainly will change later once heat integration with the overall process is considered. [Pg.92]

The scope for integrating conventional distillation columns into an overall process is often limited. Practical constraints often prevent integration of columns with the rest of the process. If the column cannot be integrated with the rest of the process, or if the potential for integration is limited by the heat flows in the background process, then attention must be turned back to the distillation operation itself and complex arrangements considered. [Pg.353]

LinnhoflF, B., Dunford, H., and Smith, R., Heat Integration of Distillation Columns into Overall Processes, Chem. Eng. Sci., 38 1175, 1983. [Pg.353]

It was noted earlier that dryers are quite difierent in character from both distillation and evaporation. However, heat is still taken in at a high temperature to be rejected in the dryer exhaust. The appropriate placement principle as applied to distillation columns and evaporators also applies to dryers. The plus/minus principle from Chap. 12 provides a general tool that can be used to understand the integration of dryers in the overall process context. If the designer has the freedom to manipulate drying temperature and gas flow rates, then these can be changed in accordance with the plus/minus principle in order to reduce overall utility costs. [Pg.359]

The potential corresponding to the reversible overall process is the measurable quantity Vobs- If we know the work function for R, that is, the potential for e (in R) = e (in air), then Vobs - r is E for the process... [Pg.211]

The reaction involving chlorite and iodide ions in the presence of malonic acid, the CIMA reaction, is another that supports oscillatory behaviour in a batch system (the chlorite-iodide reaction being a classic clock system the CIMA system also shows reaction-diffusion wave behaviour similar to the BZ reaction, see section A3.14.4). The initial reactants, chlorite and iodide are rapidly consumed, producing CIO2 and I2 which subsequently play the role of reactants . If the system is assembled from these species initially, we have the CDIMA reaction. The chemistry of this oscillator is driven by the following overall processes, with the empirical rate laws as given ... [Pg.1102]

Similarly to the response at hydrodynamic electrodes, linear and cyclic potential sweeps for simple electrode reactions will yield steady-state voltammograms with forward and reverse scans retracing one another, provided the scan rate is slow enough to maintain the steady state [28, 35, 36, 37 and 38]. The limiting current will be detemiined by the slowest step in the overall process, but if the kinetics are fast, then the current will be under diffusion control and hence obey the above equation for a disc. The slope of the wave in the absence of IR drop will, once again, depend on the degree of reversibility of the electrode process. [Pg.1940]

In practical applications, gas-surface etching reactions are carried out in plasma reactors over the approximate pressure range 10 -1 Torr, and deposition reactions are carried out by molecular beam epitaxy (MBE) in ultrahigh vacuum (UHV below 10 Torr) or by chemical vapour deposition (CVD) in the approximate range 10 -10 Torr. These applied processes can be quite complex, and key individual reaction rate constants are needed as input for modelling and simulation studies—and ultimately for optimization—of the overall processes. [Pg.2926]

One reason that the symmetric stretch is favored over the asymmetric one might be the overall process, which is electron transfer. This means that most of the END trajectories show a nonvanishing probability for electron transfer and as a result the dominant forces try to open the bond angle during the collision toward a linear structure of HjO. In this way, the totally symmetric bending mode is dynamically promoted, which couples to the symmetric stretch, but not to the asymmetric one. [Pg.244]

Were we to simply add the ionization energy of sodium (496 kJ/mol) and the electron affin ity of chlorine (—349 kJ/mol) we would conclude that the overall process is endothermic with AH° = +147 kJ/mol The energy liberated by adding an electron to chlorine is msuf ficient to override the energy required to remove an electron from sodium This analysis however fails to consider the force of attraction between the oppositely charged ions Na" and Cl which exceeds 500 kJ/mol and is more than sufficient to make the overall process exothermic Attractive forces between oppositely charged particles are termed electrostatic, or coulombic, attractions and are what we mean by an ionic bond between two atoms... [Pg.12]

Section 4 9 The potential energy diagrams for separate elementary steps can be merged into a diagram for the overall process The diagram for the reac tion of a secondary or tertiary alcohol with a hydrogen halide is charac terized by two intermediates and three transition states The reaction is classified as a ummolecular nucleophilic substitution, abbreviated as SnI... [Pg.180]

Because nitriles can be prepared from alkyl halides by nucleophilic substitution with cyanide ion the overall process RX RC=N RCH2NH2 leads to primary amines that have one more carbon atom than the starting alkyl halide... [Pg.932]

These considerations can be expressed quantitatively by writing the overall process in terms of the following mechanism... [Pg.280]

Strain development programs can mn into millions of doUars. This combined with the status of the strain in the overall process makes the strains extremely valuable and manufacturers rarely deposit useful cultures in one of the commercial coUections (14). Nevertheless, commercial coUections exist and are a very valuable, often used source of microorganisms that have shown some promise of producing smaU or minute quantities of products having real or possible commercial appHcations. These strains are often useful in augmenting in-house activities or as starters for a development program. [Pg.179]

The NO2 is absorbed in nitric acid to produce the highly concentrated acid requited for the overall process. [Pg.232]

Steam also is blended with air in some gasification units to promote the overall process via the endothermic steam—carbon reaction to form carbon monoxide and hydrogen. This was common practice at the turn of the nineteenth century, when so-called producer gasifiers were employed to manufacture LHV gas from different types of biomass and wastes. The producer gas from biomass and wastes had heating values around 5.9 MJ /mr at... [Pg.24]

Combustion. Coal combustion, not being in the strictest sense a process for the generation of gaseous synfuels, is nevertheless an important use of coal as a source of gaseous fuels. Coal combustion, an old art and probably the oldest known use of this fossil fuel, is an accumulation of complex chemical and physical phenomena. The complexity of coal itself and the variable process parameters all contribute to the overall process (8,10,47—50) (see also COLffiUSTION SCIENCE AND technology). [Pg.72]

Properties. Pilot-unit data indicate the EDS process may accommodate a wide variety of coal types. Overall process yields from bituminous, subbituminous, and lignite coals, which include Hquids from both Hquefaction and Flexicoking, are shown in Figure 14. The Hquids produced have higher nitrogen contents than are found in similar petroleum fractions. Sulfur contents reflect the sulfur levels of the starting coals ca 4.0 wt % sulfur in the dry bituminous coal 0.5 wt % in the subbituminous and 1.2 wt % sulfur in the dry lignite. [Pg.91]


See other pages where Overall process is mentioned: [Pg.3]    [Pg.76]    [Pg.83]    [Pg.143]    [Pg.475]    [Pg.1754]    [Pg.2933]    [Pg.173]    [Pg.266]    [Pg.43]    [Pg.397]    [Pg.400]    [Pg.340]    [Pg.87]    [Pg.262]    [Pg.182]    [Pg.181]    [Pg.264]    [Pg.66]    [Pg.502]   
See also in sourсe #XX -- [ Pg.1351 , Pg.1352 ]




SEARCH



Overall Processing

© 2024 chempedia.info