Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Osmium complexes oxidation states

In our application to molecular hysteresis accompanying a change in oxidation state, we have exploited linkage isomerization of ruthenium and osmium complexes (oxidation states 2+ and 3+). An early example in this circumscribed field is the linkage isomerization observed for the pentammine ruthenium complex with dimethyl sulfoxide when the oxidation state changes from 2+ (heteroligand attached at S) to 3+ (relocation to oxygen) (Fig. 3A) [13, 14]. The points of attachment have been confirmed by X-ray diffraction... [Pg.119]

Coordination Compounds. Osmium in oxidation states from +2 to +8 forms a wide range of complexes with nitrogen ligands. Amine... [Pg.178]

Ruthenium and Osmium High Oxidation States S.6.2.3 Oxo Complexes... [Pg.739]

While inorganic complexes of osmium in oxidation states +4 through +8 have been known for many years, the study of high-valent alkyl and aryl complexes of osmium is much more recent. The organometallic complexes include homoleptic see Homoleptic Compound) alkyls and aryls, oxo alkyls and aryls, nitrido/imido alkyls and aryls, and cyclopentadienyl see Cyclopentadienyl) alkyls and aryls. The majority of these are complexes of osmium(VI). [Pg.3371]

Hexahalogenoosmium anions [OsXa] " undoubtedly contain osmium in oxidation state 4 -h it is with this currently popular class of complexes that the remaining references in this section deal. Rate constants and activation parameters (A// and A5 ) have been determined in acidic aqueous solution for 13 aquation and anation reactions of the type represented by the forward and reverse processes of the equilibrium of equation (24) ... [Pg.145]

Like mthenium, amines coordinated to osmium in higher oxidation states such as Os(IV) ate readily deprotonated, as in [Os(en) (NHCH2CH2NH2)] [111614-75-6], This complex is subject to oxidative dehydrogenation to form an imine complex (105). An unusual Os(IV) hydride, [OsH2(en)2] [57345-94-5] has been isolated and characterized. The complexes of aromatic heterocycHc amines such as pyridine, bipytidine, phenanthroline, and terpyridine ate similar to those of mthenium. Examples include [Os(bipy )3 [23648-06-8], [Os(bipy)2acac] [47691-08-7],... [Pg.178]

Organometallic Compounds. Osmium forms numerous mononuclear and polynuclear organometaUic complexes, primarily iu lower oxidation states. There are many complexes of carbon monoxide, such as [Os(CO)3] [16406-49-8], [Os(CO) H2] [22372-70-9], [Os3(CO)2 H2] [56398-24-4],... [Pg.179]

Iron forms barely any complexes in oxidation states above +3, and in the +8, +7 and +6 states those of ruthenium are less numerous than those of osmium. complexes are confined... [Pg.1085]

This is the second of the common oxidation states for iron and is familiar for ruthenium, particularly with Group 15-donor ligands (Ru probably forms more nitrosyl complexes than any other metal). Osmium(II) also produces a considerable number of complexes but is usually more strongly reducing than Ru". [Pg.1091]

The complexes of ruthenium and osmium in the same oxidation state are generally similar and are, therefore, treated together the structural (Table 1.3) and vibrational data (Table 1.4) have been set out in some detail to demonstrate halogen-dependent trends. [Pg.7]

Within the osmium complexes in oxidation states (II-IV) [11,12] the stability of the +4 oxidation state becomes more important. Ammine and tertiary phosphine complexes have been selected for detailed examination. [Pg.54]

Comparison with data (mainly obtained from EXAFS measurements) on osmium diarsine complexes (Table 1.14) shows that as the oxidation state increases, osmium—halogen bonds shorten whereas Os-P and Os—As bonds lengthen. Bond shortening is predicted for bonds with ionic character,... [Pg.60]

The olive-green osmium(VI) octaethylporphyrin complex 0s02(0EP) (IR v(0s—0) 825 cm-1) is representative of a number of osmyP porphyrins [185] they can readily be transformed into a number of osmium porphyrins in lower oxidation states (Figure 1.73). [Pg.71]

Many carbonyl and carbonyl metallate complexes of the second and third row, in low oxidation states, are basic in nature and, for this reason, adequate intermediates for the formation of metal— metal bonds of a donor-acceptor nature. Furthermore, the structural similarity and isolobal relationship between the proton and group 11 cations has lead to the synthesis of a high number of cluster complexes with silver—metal bonds.1534"1535 Thus, silver(I) binds to ruthenium,15 1556 osmium,1557-1560 rhodium,1561,1562 iron,1563-1572 cobalt,1573 chromium, molybdenum, or tungsten,1574-1576 rhe-nium, niobium or tantalum, or nickel. Some examples are shown in Figure 17. [Pg.988]

Thus the reactivity of transition metal-carbene complexes, that is, whether they behave as electrophiles or nucleophiles, is well explained on the basis of the frontier orbital theory. Studies of carbene complexes of ruthenium and osmium, by providing examples with the metal in either of two oxidation states [Ru(II), Os(II) Ru(0), Os(O)], help clarify this picture, and further illustrations of this will be found in the following sections. [Pg.129]

This behavior, as well as complementary observations, can be explained on the basis of the reaction mechanism depicted in Scheme 5.3. The main catalytic cycle involves three successive forms of the enzyme in which the iron porphyrin prosthetic group undergoes changes in the iron oxidation state and the coordination sphere. E is a simple iron(III) complex. Upon reaction with hydrogen peroxide, it is converted into a cation radical oxo complex in which iron has a formal oxidation number of 5. This is then reduced by the reduced form of the cosubstrate, here an osmium(II) complex, to give an oxo complex in which iron has a formal oxidation number of 4. [Pg.312]

Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer... Figure 2.5 Schematic representation of the Au/MPS/PAH-Os/solution interface modeled in Refs. [118-120] using the molecular theory for modified polyelectrolyte electrodes described in Section 2.5. The red arrows indicate the chemical equilibria considered by the theory. The redox polymer, PAH-Os (see Figure 2.4), is divided into the poly(allyl-amine) backbone (depicted as blue and light blue solid lines) and the pyridine-bipyridine osmium complexes. Each osmium complex is in redox equilibrium with the gold substrate and, dependingon its potential, can be in an oxidized Os(lll) (red spheres) or in a reduced Os(ll) (blue sphere) state. The allyl-amine units can be in a positively charged protonated state (plus signs on the polymer...
There have also been significant advances in the imido chemistry of ruthenium and osmium. A variety of imido complexes in oxidation states +8 to +6 have been reported. Notably, osmium (VIII) imido complexes are active intermediates in osmium-catalyzed asymmetric aminohydroxyl-ations of alkenes. Ruthenium(VI) imido complexes with porphyrin ligands can effect stoichiometric and catalytic aziridination of alkenes. With chiral porphyrins, asymmetric aziridination of alkenes has also been achieved. Some of these imido species may also serve as models for biological processes. An imido species has been postulated as an intermediate in the nitrite reductase cycle. " ... [Pg.735]


See other pages where Osmium complexes oxidation states is mentioned: [Pg.734]    [Pg.609]    [Pg.290]    [Pg.176]    [Pg.178]    [Pg.54]    [Pg.416]    [Pg.1296]    [Pg.602]    [Pg.14]    [Pg.69]    [Pg.230]    [Pg.220]    [Pg.294]    [Pg.301]    [Pg.110]    [Pg.556]    [Pg.613]    [Pg.735]    [Pg.814]    [Pg.831]    [Pg.849]    [Pg.23]    [Pg.3]   
See also in sourсe #XX -- [ Pg.4 , Pg.522 ]




SEARCH



Complexes 7 oxidation state

Osmium complexes

Osmium oxidation states

Osmium oxide

Oxidation states oxide complexes

© 2024 chempedia.info