Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ordering patterns ferroelectric

Raman spectra as a function of temperature are shown in Fig. 21.6b for the C2B4S2 SL. Other superlattices exhibit similar temperature evolution of Raman spectra. These data were used to determine Tc using the same approach as described in the previous section, based on the fact that cubic centrosymmetric perovskite-type crystals have no first-order Raman active modes in the paraelectric phase. The temperature evolution of Raman spectra has indicated that all SLs remain in the tetragonal ferroelectric phase with out-of-plane polarization in the entire temperature range below T. The Tc determination is illustrated in Fig. 21.7 for three of the SLs studied SIBICI, S2B4C2, and S1B3C1. Again, the normalized intensities of the TO2 and TO4 phonon peaks (marked by arrows in Fig. 21.6b) were used. In the three-component SLs studied, a structural asymmetry is introduced by the presence of the three different layers, BaTiOs, SrTiOs, and CaTiOs, in each period. Therefore, the phonon peaks should not disappear from the spectra completely upon transition to the paraelectric phase at T. Raman intensity should rather drop to some small but non-zero value. However, this inversion symmetry breakdown appears to have a small effect in terms of atomic displacement patterns associated with phonons, and this residual above-Tc Raman intensity appears too small to be detected. Therefore, the observed temperature evolution of Raman intensities shows a behavior similar to that of symmetric two-component superlattices. [Pg.608]

Without going into details of different approaches to ferroelectricity, here we highlight the important results. The effect of spontaneous polarization is a structural phase transition when local odd-parity distortions order in a ferroelectric pattern. [Pg.706]

As an example, the joint analysis of IR and Raman spectra provided evidence of the partial ordering of cations in a Fe-Cr corundum-type mixed sesquioxides, which are used industrially as high temperature water-gas shift catalysts, but are also active in olefin oxidative dehydrogenation. X-ray diffraction (XRD) patterns of these solids indicate the conmdum-type structure without any superstructure. This implies that iron and chromium ions are randomly distributed. IR and Raman spectra instead definitely show that cations are at least partially ordered in layers such as in the ilmenite-type superstructure. Similarly, XRD analysis shows a cubic (non-ferroelectric) structure of nanometric BaTi03, while vibrational spectroscopies reveal microscopic asymmetry of this structure. Similarly, IR spectroscopy allowed the determination of the state of vanadium in solid solution in Ti02 anatase catalysts, and the presence of Ti" + in the silicalite framework of TSl catalysts, " used for the selective oxidation of phenol and the ammoximation of cyclohexanone with hydrogen peroxide. [Pg.450]

Presumed ferroelectric effects in liquid crystals were reported by Williams at RCA in Princeton, U. S. A., as early as 1963, and thus at the very beginning of the modern era of liquid crystal research [5]. By subjecting nematics to rather high dc fields, he provoked domain patterns that resembled those found in solid ferroelectrics. The ferroelectric interpretation seemed to be strengthened by subsequent observations of hysteresis loops by Kapustin and Vistin and by Williams and Heilmeier [7]. However, these patterns turned out to be related to electrohydrodynamic instabilities, which are well understood today (see, for instance, [8], Sec. 2.4.3 or [9], Sec. 2.4.2), and it is also well known that certain loops (similar to ferroelectric hysteresis) may be obtained from a nonlinear lossy material (see [10], Sec. 2.4.2). As we know today, nematics do not show ferroelectric or even polar properties. In order to find such properties we have to lower the symmetry until we come to the tilted smectics, and further lowering their symmetry by making them chiral. The prime example of such a liquid crystal phase is the smectic C. ... [Pg.1536]


See other pages where Ordering patterns ferroelectric is mentioned: [Pg.110]    [Pg.223]    [Pg.206]    [Pg.126]    [Pg.3]    [Pg.226]    [Pg.26]    [Pg.646]    [Pg.214]    [Pg.125]    [Pg.3099]    [Pg.49]    [Pg.140]    [Pg.245]    [Pg.358]    [Pg.368]    [Pg.44]    [Pg.154]    [Pg.688]    [Pg.161]    [Pg.482]   
See also in sourсe #XX -- [ Pg.706 ]




SEARCH



Ferroelectric order

Order ferroelectrics

Ordering patterns

Pattern orders

© 2024 chempedia.info