Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Orbitals exclusion effect

Marquez, F., Marti, V., Palomares, E., Garcia, H. and Adam, W. (2002). Observation of azo chromophore fluorescence and phosphorescence emissions from DBH by applying exclusively the orbital confinement effect in siliceous zeolites devoid of charge-balancing cations. J. Am. Chem. Soc. 124, 7264-7265... [Pg.262]

Equation (87) represents a 3e "Fermi correlation between i, j and k. Electrons (spin-orbitals) i, j while correlating are prevented from making virtual transitions to spin-orbitals k which are already occupied. The more important a given k is in the C.I. expansion of the greater is this effect. Tlius, as electrons become delocalized, near-degeneracies, and therefore the importance of certain of the k s increase. This also makes their "exclusion effect more significant. [Pg.356]

Very recently there has been an experimental and theoretical study of electronic substituent effects in 4-aminoaryl (4-substituted aryl) sulfones146. PMR, 13C NMR and infrared measurements were involved and semi-empirical all-valence CNDO/2 calculations, with and without sulfur d orbitals, were carried out. Various correlations between spectral results and substituent constants are presented. There is good agreement between experimental and theoretical data, which does not depend on the inclusion or exclusion of the sulfur d orbitals from the calculations. [Pg.519]

Primary steric effects are due to repulsions between electrons in valence orbitals on atoms which are not bonded to each other. They are believed to result from the interpenetration of occupied orbitals on one atom by electrons on the other resulting in a violation of the Pauli exclusion principle. All steric interactions raise the energy of the system in which they occur. In terms of their effect on chemical reactivity, they may either decrease or increase a rate or equilibrium constant depending on whether steric interactions are greater in the reactant or in the product (equilibria) or transition state (rate). [Pg.636]

Before investigating the qualitative concepts of the VSEPR model it is worth noting that the details of the interactions between the electron pairs have been ascribed to a size-Pauli exclusion principle result . But objects do not repel each other simply because of their sizes (i.e. interpenetrations) only if the constituents of the objects interact is any interaction possible10). If we are to use the idea of orbital size at all we must avoid the danger of contrasting a phenomenon (electron repulsion) with one of its manifestations (steric effects). The only quantitative tests which we can apply to the VSEPR model are ones based on the terms in the molecular Hamiltonian specifically, electron repulsion. [Pg.79]

The first kind of simplification exclusively concerns the size of the basis set used in the linear combination of one center orbitals. Variational principle is still fulfilled by this type of "ab initio SCF calculation, but the number of functions applied is not as large as necessary to come close to the H. F. limit of the total energy. Most calculations of medium-sized structures consisting for example of some hydrogens and a few second row atoms, are characterized by this deficiency. Although these calculations belong to the class of "ab initio" investigations of molecular structure, basis set effects were shown to be important 54> and unfortunately the number of artificial results due to a limited basis is not too small. [Pg.16]

The explanation of the regiospecificity of Diels-Alder reactions requires knowledge of the effect of substituents on the coefficients of the HOMO and LUMO orbitals. In the case of normal electron demand, the important orbitals are the HOMO on the diene and the LUMO on the dienophile. It has been shown that the reaction occurs in a way which bonds together the terminal atoms with the coefficients of greatest magnitude and those with the coefficients of smaller magnitude [18]. The additions are almost exclusively cis and with only a few exceptions, the relative configurations of substituents in the components is kept in the products [19]. [Pg.236]

We now consider how to eliminate either all relativistic effects or exclusively the spin-orbit interaction from the relativistic Hamiltonian. We start from the Dirac equation in the molecular field... [Pg.391]

An inner-sphere electron reduction has been proposed as a possible mechanism for the Fe(II)-induced decomposition of 1,2,4-trioxolanes (ozonides) (75) and (76). Benzoic acid was found to be the major product. The nucleophilic Ee(II) species attack the ozonide from the less hindered side of the electrophilic 0-0 a orbital to generate exclusively the Ee(III) oxy-complexed radical (inner-sphere electron transfer). After selective scission of the C-C bond, the resulting carbon-centred radical produced the observed product. The substituent effect determine the regioselective generation of one of the two possible Fe(III)-complexed oxy radicals. The bond scission shown will occur if R is bulkier than R. ... [Pg.176]

It is also worthwhile to compare the ferrocenyl ethylene (vinylferrocene) anion-and cation-radicals. For the cyano vinylferrocene anion-radical, the strong delocalization of an unpaired electron was observed (see Section 1.2.2). This is accompanied with effective cis trans conversion (the barrier of rotation around the -C=C- bond is lowered). As for the cation-radicals of the vinylferrocene series, a single electron remains in the highest MO formerly occupied by two electrons. According to photoelectron spectroscopy and quantum mechanical calculations, the HOMO is mostly or even exclusively the orbital of iron (Todres et al. 1992). This orbital is formed without the participation of the ethylenic fragment. The situation is quite different from arylethylene radical cations in which all n orbitals overlap. After one-electron oxidation of ferrocenyl ethylene, an unpaired electron and a positive charge are centered on iron. The —C=C— bond does not share the n-electron cloud with the Fe center. As a result, no cis trans conversion occurs (Todres 2001). [Pg.337]


See other pages where Orbitals exclusion effect is mentioned: [Pg.110]    [Pg.800]    [Pg.655]    [Pg.800]    [Pg.655]    [Pg.241]    [Pg.337]    [Pg.357]    [Pg.377]    [Pg.382]    [Pg.69]    [Pg.107]    [Pg.107]    [Pg.314]    [Pg.583]    [Pg.1896]    [Pg.37]    [Pg.24]    [Pg.177]    [Pg.124]    [Pg.658]    [Pg.206]    [Pg.68]    [Pg.13]    [Pg.134]    [Pg.248]    [Pg.234]    [Pg.703]    [Pg.284]    [Pg.87]    [Pg.57]    [Pg.4]    [Pg.953]    [Pg.202]    [Pg.420]    [Pg.15]    [Pg.439]    [Pg.471]   
See also in sourсe #XX -- [ Pg.337 ]




SEARCH



Orbital effects

Orbital exclusion

© 2024 chempedia.info