Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lumo orbitals

In view of this, early quantum mechanical approximations still merit interest, as they can provide quantitative data that can be correlated with observations on chemical reactivity. One of the most successful methods for explaining the course of chemical reactions is frontier molecular orbital (FMO) theory [5]. The course of a chemical reaction is rationali2ed on the basis of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the frontier orbitals. Both the energy and the orbital coefficients of the HOMO and LUMO of the reactants are taken into account. [Pg.179]

If the mini her of electrons, N, is even, yon can haven dosed shell (as shown ) where the occupied orbitals each contain two electron s. For an odd n nrn her of electron s, at least on e orbital rn ust be singly occupied. In the example, three orbitals are occupied by-electron s and two orbitals arc nn occupied. Th e h ighest occupied nioleciilar orbital (HOMO is t[r), and the lowest unoccupied molecular orbital (LUMO) is The example above is a singlet, a state oh total spin S=0. Exciting one electron from the HOMO to the LUMO orbital would give one ol the I ollowing excited states ... [Pg.221]

I he electron density distribution of individual molecular orbitals may also be determined and plotted. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are often of particular interest as these are the orbitals most cimimonly involved in chemical reactions. As an illustration, the HOMO and LUMO for Jonnamide are displayed in Figures 2.12 and 2.13 (colour plate section) as surface pictures. [Pg.99]

These absorptions are ascribed to n-n transitions, that is, transitions of an electron from the highest occupied n molecular orbital (HOMO) to the lowest unoccupied n molecular orbital (LUMO). One can decide which orbitals are the HOMO and LUMO by filling electrons into the molecular energy level diagram from the bottom up, two electrons to each molecular orbital. The number of electrons is the number of sp carbon atoms contributing to the n system of a neuhal polyalkene, two for each double bond. In ethylene, there is only one occupied MO and one unoccupied MO. The occupied orbital in ethylene is p below the energy level represented by ot, and the unoccupied orbital is p above it. The separation between the only possibilities for the HOMO and LUMO is 2.00p. [Pg.197]

FIGURE 13 38 The ir ir transition in as trans 1 3 cyclooctadiene involves exci tation of an electron from the highest occupied molec ular orbital (HOMO) to the lowest unoccupied molecu lar orbital (LUMO)... [Pg.566]

When you request an orbital, you can use the cardinal number of the orbital (ordered by energy and starting with number=l) or an offset from either the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO). Offset from the HOMO are negative and from the LUMO are positive. Often these frontier orbitals are the ones of most chemical interest. [Pg.244]

Thermodynamic properties such as heats of reaction and heats of formation can be computed mote rehably by ab initio theory than by semiempirical MO methods (55). However, the Hterature of the method appropriate to the study should be carefully checked before a technique is selected. Finally, the role of computer graphics in evaluating quantum mechanical properties should not be overlooked. As seen in Figures 2—6, significant information can be conveyed with stick models or various surfaces with charge properties mapped onto them. Additionally, information about orbitals, such as the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), which ate important sites of reactivity in electrophilic and nucleophilic reactions, can be plotted readily. Figure 7 shows representations of the HOMO and LUMO, respectively, for the antiulcer dmg Zantac. [Pg.163]

Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan. Fig. 7. Graphical representations of (a) the Highest Occupied Molecular Orbital (HOMO) and (b) the Lowest Unoccupied Molecular Orbital (LUMO) for ranitidine. It is possible, in the ordinarily visible color-coded data not shown here, to distinguish the strong localization (a) of the HOMO to the sulfur atom and adjacent nitroethyleneamine fragment and the contrasting localization (b) of the LUMO to the nitroethylenearnine fragment. Neither the LUMO not HOMO appear to have contributions from the dimethylaminomethyl-suhstitiited furan.
Chemical Properties. The chemistry of ketenes is dominated by the strongly electrophilic j/)-hybridi2ed carbon atom and alow energy lowest unoccupied molecular orbital (LUMO). Therefore, ketenes are especially prone to nucleophilic attack at Cl and to [2 + 2] cycloadditions. Less frequent reactions are the so-called ketene iasertion, a special case of addition to substances with strongly polarized or polarizable single bonds (37), and the addition of electrophiles at C2. For a review of addition reactions of ketenes see Reference 8. [Pg.473]

It is now possible to "see" the spatial nature of molecular orbitals (10). This information has always been available in the voluminous output from quantum mechanics programs, but it can be discerned much more rapidly when presented in visual form. Chemical reactivity is often governed by the nature of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Spectroscopic phenomena usually depend on the HOMO and higher energy unoccupied states, all of which can be displayed and examined in detail. [Pg.93]

The most extensive calculations of the electronic structure of fullerenes so far have been done for Ceo- Representative results for the energy levels of the free Ceo molecule are shown in Fig. 5(a) [60]. Because of the molecular nature of solid C o, the electronic structure for the solid phase is expected to be closely related to that of the free molecule [61]. An LDA calculation for the crystalline phase is shown in Fig. 5(b) for the energy bands derived from the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) for Cgo, and the band gap between the LUMO and HOMO-derived energy bands is shown on the figure. The LDA calculations are one-electron treatments which tend to underestimate the actual bandgap. Nevertheless, such calculations are widely used in the fullerene literature to provide physical insights about many of the physical properties. [Pg.47]

The most important molecular- orbitals are the so-called frontier molecular- orbitals. These are the highest (energy) occupied molecular- orbital (HOMO), and lowest (energy) unoccupied molecular- orbital (LUMO). The following picture shows the LUMO surface for the hydrogen molecule, H2. The LUMO consists of two separate surfaces, a red... [Pg.1271]

Paradoxically, although they are electron-rich, S-N compounds are good electron acceptors because the lowest unoccupied molecular orbitals (LUMOs) are low-lying relative to those in the analogous carbon systems. For example, the ten r-electron [SsNs] anion undergoes a two-electron electrochemical reduction to form the trianion [SsNs] whereas benzene, the aromatic hydrocarbon analogue of [SsNs], forms the monoanion radical [CeHg] upon reduction. ... [Pg.43]

Although the most important, the electrostatic potential is not only the quantity which when mapped onto an electron density surface may provide useful chemical information. Maps of certain key molecular orbitals, in particular, the HOMO and LUMO, may also lead to informative models. Consider, for example, a map of the (absolute) value of the lowest-unoccupied molecular orbital (LUMO) in cyclohexanone, two views of which are shown below. [Pg.31]

Backside attack may be favored in order to facilitate transfer of nonbonding electrons from the nucleophile into the electrophile s lowest-unoccupied molecular orbital (LUMO). Efficient electron transfer requires maximal overlap of the LUMO and the donor orbital (usually a nonbonded electron pair on the nucleophile). Examine the LUMO of methyl bromide. How would a nucleophile have to approach in order to obtain the best overlap Is your answer more consistent with preferential backside or frontside attack ... [Pg.89]

Next, examine the lowest-unoccupied molecular orbital (LUMO) for the cation. The components of the LUMO (its lobes ) identify locations where the cation might bond to a water molecule. How many lobes are associated with C 7 For each lobe, draw the alcohol that will be produced (show stereochemistry). How many alcohol enantiomers will form If more than one is expected, decide which wiU form more rapidly based on the relative sizes of the lobes. [Pg.96]

Compare atomic charges and electrostatic potential maps for the three cations. For each, is the charge localized or delocalized Is it associated with an empty a-type or Tt-type orbital Examine the lowest-unoccupied molecular orbital (LUMO) of each cation. Draw all of the resonance contributors needed for a complete description of each cation. Assign the hybridization of the C" atom, and describe how each orbital on this atom is utilized (o bond, n bond, empty). How do you explain the benzene ring effects that you observe ... [Pg.97]

Display the lowest-unoccupied molecular orbital (LUMO) for cyclohexyl bromonium ion. From which side will the Br attack Will this lead to formation of cis-1,2-dibromo-cyclohexane or 1,2-dibromocyclohexane Is this... [Pg.111]

Dimethylborane+propene Cl depicts the transition state for addition of dimethylborane onto the terminal alkene carbon of propene. Examine and describe the vibration with the imaginary frequency. Which bonds stretch and compress the most What simultaneous changes in bonding are implied by these motions Simultaneously display the highest-occupied molecular orbital (HOMO) of propene and the lowest-unoccupied molecular orbital (LUMO) of dimethylborane. Is the overall geometry of the transition state consistent with constructive overlap between the two Explain. [Pg.112]

Is the location of positive charge in the more stable cation also where the lowest-unoccupied molecular orbital (LUMO) is most concentrated Rationalize what you observe. Does attack by a nucleophile (bromide) lead to the Markovnikov or anti Markovnikov product ... [Pg.116]

Selective ether cleavage comes about during the substitution step, which obeys an Sn2 mechanism. Therefore, selective cleavage requires selective attack by Y on one of the electrophilic carbons in the protonated ether. Determine if selective attack is likely by examining the shape of the lowest-unoccupied molecular orbital (LUMO) in protonated ethyl propyl ether. Is this orbital larger near one carbon than the other If so, what product combination will result What other atom(s) contribute to the LUMO What would happen if 1 attacked this atom(s) ... [Pg.127]

The product of nucleophilic attack can be anticipated by examining the lowest-unoccupied molecular orbital (LUMO) on protonated cyclopentene oxide. From which direction (top or bottom) would a nucleophile be more likely to approach each epoxide carbon in order to transfer electrons into this orbital Explain. Does one carbon contribute more to the LUMO, or is the orbital evenly spread out over both epoxide carbons Assuming that LUMO shape dictates product stereochemistry, predict which stereoisomers will be obtained, and their approximate relative amounts. Is the anticipated kinetic product also the thermodynamic product (Compare energies of 1,2-cyclopentanediol stereoisomers to tell.)... [Pg.129]


See other pages where Lumo orbitals is mentioned: [Pg.182]    [Pg.951]    [Pg.393]    [Pg.42]    [Pg.307]    [Pg.4]    [Pg.565]    [Pg.42]    [Pg.233]    [Pg.240]    [Pg.244]    [Pg.74]    [Pg.449]    [Pg.40]    [Pg.169]    [Pg.797]    [Pg.840]    [Pg.565]    [Pg.361]    [Pg.412]    [Pg.35]   
See also in sourсe #XX -- [ Pg.502 ]




SEARCH



Frontier Orbitals HOMO and LUMO

Frontier orbital approximation HOMO-LUMO interactions

Frontier orbital positions LUMO)

HOMO and LUMO orbitals, energy

Highest occupied molecular orbital and LUMO

Highest occupied molecular orbital/lowest LUMO) overlap

LUMO

LUMO Energies and Orbital Coefficients

LUMO HOMO orbitals

LUMO molecular orbitals

LUMO orbital

LUMO orbital

LUMO orbital energies

LUMOs

LUMOs orbitals

Lowest Occupied Molecular Orbital LUMO)

Lowest Unoccupied Molecular Orbital LUMO)

Lowest Unoccupied Molecular Orbitals LUMOs)

Lowest unoccupied molecular orbit LUMO)

Lowest unoccupied molecular orbital HOMO-LUMO levels

Lowest unoccupied molecular orbital LUMO energy levels

Lowest unoccupied molecular orbital LUMO) energies

Lowest unoccupied molecular orbital LUMO) level

Lowest unoccupied molecular orbital LUMO), pericyclic reaction

Lowest unoccupied molecular orbital LUMO-controlled dipole

Lowest unoccupied molecular orbitals LUMO)

Lowest unoccupied molecular orbitals LUMOs), electron promotion

Molecular orbital HOMO-LUMO gap

Molecular orbitals HOMO and LUMO

Orbitals HOMO-LUMO interactions

SOMO-LUMO orbital interactions

© 2024 chempedia.info