Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optimization multiple reactions

It should be emphasized that these recommendations for the initial settings of the reactor conversion will almost certainly change at a later stage, since reactor conversion is an extremely important optimization variable. When dealing with multiple reactions, selectivity is maximized for the chosen conversion. Thus a reactor type, temperature, pressure, and catalyst are chosen to this end. Figure 2.10 summarizes the basic decisions which must be made to maximize selectivity. ... [Pg.64]

Multiple reactions, and reversible reactions, since these are a special form of multiple reactions, usually exhibit an optimal temperature with respect to the yield of a desired product. The reaction energetics are not trivial, even if the... [Pg.154]

Figure 12 (from the chapter Exploring Multiple Reaction Paths to a Single Product Channel ). Two-dimensional cut through the potential surface for fragmentation of the transition state [OH CH3 ] complex as a function of the CF bond length and the FCO angle. All other coordinates are optimized at each point of this PES. Pathway 1 is the direct dissociation, while pathway 2 leads to the hydrogen-bonded [CH3OH F ] structure. The letter symbols correspond to configurations shown in Fig. 11. Reprinted from [63] with permission from the American Association for the Advancement of Science. Figure 12 (from the chapter Exploring Multiple Reaction Paths to a Single Product Channel ). Two-dimensional cut through the potential surface for fragmentation of the transition state [OH CH3 ] complex as a function of the CF bond length and the FCO angle. All other coordinates are optimized at each point of this PES. Pathway 1 is the direct dissociation, while pathway 2 leads to the hydrogen-bonded [CH3OH F ] structure. The letter symbols correspond to configurations shown in Fig. 11. Reprinted from [63] with permission from the American Association for the Advancement of Science.
In the past, no snitable analytical methodologies were capable of investigating these multiple reactions and even today, the complete extraction and analysis of all the componnds is still a difficult task. The methods for extraction must be optimized for each sample according to the solubility of either phytylated (chlorophylls and pheophytins) or dephytylated (chlorophyllides and pheophorbides) derivatives, often requiring several repeated steps and the use of a single or a mixture of organic solvents. [Pg.430]

When multiple reactions are possible, certain of the products have greater economic value than others, and one must select the type of reactor and the operating conditions so as to optimize the product distribution and yield. In this subsection we examine how the temperature can be manipulated with these ends in mind. In our treatment we will ignore the effect of concentration levels on the product distribution by assuming that the concentration dependence of the rate expressions for the competing reactions is the same in all cases. The concentration effects were treated in detail in Chapter 9. [Pg.378]

The multiple reaction monitoring (MRM) conditions for each analyte were optimized by infusing 0.1 jxglmL of analyte in mobile phase. The Ionspray needle was maintained at 4.0 kV and the turbo gas temperature was 650°C. Nebulizing gas, auxiliary gas, curtain gas, and collision gas flows were set at 35, 35,40, and 4, respectively. In the MRM mode, collision energies of 17,16, and 15 eV... [Pg.31]

The application of multiple reaction parameters executed in a parallel array format has been used to expedite the identification of optimal conditions for the synthesis of a collection of almost 600 new interleukin-1/ converting enzyme inhibitors [89]. The reaction in question was the problematic conversion of a / -tert-butyl aspartic acid bromoethylketone to the corresponding acyloxyketone (Scheme 2.63). The study en-... [Pg.103]

We noted earlier that chemical engineers are seldom concerned with single-reaction systems because they can always be optimized simply by heating to increase the rate or by finding a suitable catalyst [You don t need to hire a chemical engineer to solve the problems in Chapter 3]. Essentially aU important processes involve multiple reactions where the problem is not to increase the rate but to create a reactor configuration that will maximize the production of desired products while rninirnizing the production of undesired ones. [Pg.146]

Notes DP, declustering potential CE, collision energy. The CE values were optimized in such a way that the sensitivity of the multiple reaction monitoring signal was at the maximum. [Pg.97]

As noted in the introduction, a major aim of the current research is the development of "black-box" automated reactors that can produce particles with desired physicochemical properties on demand and without any user intervention. In operation, an ideal reactor would behave in the manner of Figure 12. The user would first specify the required particle properties. The reactor would then evaluate multiple reaction conditions until it eventually identified an appropriate set of reaction conditions that yield particles with the specified properties, and it would then continue to produce particles with exactly these properties until instructed to stop. There are three essential parts to any automated system—(1) physical machinery to perform the process at hand, (2) online detectors for monitoring the output of the process, and (3) decision-making software that repeatedly updates the process parameters until a product with the desired properties is obtained. The effectiveness of the automation procedure is critically dependent on the performance of these three subsystems, each of which must satisfy a number of key criteria the machinery should provide precise reproducible control of the physical process and should carry out the individual process steps as rapidly as possible to enable fast screening the online detectors should provide real-time low-noise information about the end product and the decision-making software should search for the optimal conditions in a way that is both parsimonious in terms of experimental measurements (in order to ensure a fast time-to-solution) and tolerant of noise in the experimental system. [Pg.211]

For the detection, a tandem mass spectrometer Quattro Micro API ESCI (Waters Corp., Milford, MA) with a triple quadrupole was employed. The instrument was operated in electrospray in the positive ionization mode (ESI+) with the following optimized parameters capillary voltage, 0.5 kV source block temperature, 130 °C nebulization and desolvation gas (nitrogen) heated at 400 °C and delivered at 800 L/h, and as cone gas at 50 L/h collision cell pressure, 3 x 1(F6 bar (argon). Data was recorded in the multiple reaction monitoring (MRM) mode by selection of the two most intense precursor-to-product ion transitions for each analyte, except for the ISs, for which only one transition was monitored. The most intense transition for each analyte was used for quantitative purposes. Table 2 shows MRM transitions, cone voltages and collision energies used for the analysis of the antidepressants included in the LC-MS/MS method. [Pg.163]

Evidently, changes in the reactor size impact on the above findings allowing an increase in the reactor holdup leads to an increase in the single-pass conversion and reduces the flow rate of the material recycle stream. While plant configurations with low reactor capacity are preferred in processes featuring multiple reactions with valuable intermediate products (Luyben 1993b), the optimal sizes... [Pg.38]

A complete picture of polymer thermal degradation is clouded because multiple reaction mechanisms can be operable for a single polymer at a single temperature, leading to a host of volatile products and residues. Therefore, one has to consider the relative rates of these competing reactions to establish an optimized and controlled binder burnout. [Pg.735]


See other pages where Optimization multiple reactions is mentioned: [Pg.519]    [Pg.519]    [Pg.2332]    [Pg.328]    [Pg.55]    [Pg.314]    [Pg.68]    [Pg.1152]    [Pg.116]    [Pg.191]    [Pg.32]    [Pg.317]    [Pg.375]    [Pg.379]    [Pg.217]    [Pg.1247]    [Pg.435]    [Pg.102]    [Pg.205]    [Pg.213]    [Pg.220]    [Pg.191]    [Pg.372]    [Pg.233]    [Pg.565]    [Pg.217]    [Pg.11]    [Pg.678]    [Pg.1951]    [Pg.334]    [Pg.194]    [Pg.562]    [Pg.55]   
See also in sourсe #XX -- [ Pg.244 , Pg.245 ]




SEARCH



Multiple optimization

Multiple reactions

Reaction multiple reactions

Reaction optimization

© 2024 chempedia.info