Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical Properties of Monolayers

The detailed examination of the behavior of light passing through or reflected by an interface can, in principle, allow the determination of the monolayer thickness, its index of refiraction and absorption coefficient as a function of wavelength. The subjects of ellipsometry, spectroscopy, and x-ray reflection deal with this goal we sketch these techniques here. [Pg.126]

In ellipsometry monochromatic light such as from a He-Ne laser, is passed through a polarizer, rotated by passing through a compensator before it impinges on the interface to be studied [142]. The reflected beam will be elliptically polarized and is measured by a polarization analyzer. In null ellipsometry, the polarizer, compensator, and analyzer are rotated to produce maximum extinction. The phase shift between the parallel and perpendicular components A and the ratio of the amplitudes of these components, tan are related to the polarizer and analyzer angles p and a, respectively. The changes in A and when a film is present can be related in an implicit form to the complex index of refraction and thickness of the film. [Pg.126]

In the case of Langmuir monolayers, film thickness and index of refraction have not been given much attention. While several groups have measured A versus a, [143-145], calculations by Knoll and co-workers [146] call into question the ability of ellipsometry to unambiguously determine thickness and refractive index of a Langmuir monolayer. A small error in the chosen index of refraction produces a large error in thickness. A new microscopic imaging technique described in section IV-3E uses ellipsometric contrast but does not require absolute determination of thickness and refractive index. Ellipsometry is routinely used to successfully characterize thin films on solid supports as described in Sections X-7, XI-2, and XV-7. [Pg.126]

Interferometry is based on the fact that light reflected from the front and back interfaces of a film travels different distances, producing interference effects. The method has been applied to Langmuir-Blodgett films (Section XV-7) and to soap films (Section XrV-8) [147-149]. [Pg.126]

Absorption spectroscopy provides a means to study particular details about a monolayer. Transmission spectroscopy is difficult because the film, which is thin, absorbs little. Gaines [1] describes multiple-pass procedures for overcoming this problem. Reflection spectroscopy in the UV-visible range has been reported for lipid monolayers [150,151] and in the IR range for oleic acid [152]. [Pg.126]


See other pages where Optical Properties of Monolayers is mentioned: [Pg.126]   


SEARCH



Monolayer properties

Of monolayer

© 2024 chempedia.info