Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical nuclear magnetic resonance

Ranges (4) to (6) are covered by fiber optics, nuclear magnetic resonance imaging (NMRI) and radioactive tracer technique ranges (1) to (4) are covered by the rest of the instrumentation in this volume. [Pg.1]

Association ONMR optical nuclear magnetic resonance... [Pg.605]

The melting points, optical rotations, and uv spectral data for selected prostanoids are provided in Table 1. Additional physical properties for the primary PGs have been summarized in the Hterature and the physical methods have been reviewed (47). The molecular conformations of PGE2 and PGA have been determined in the soHd state by x-ray diffraction, and special H and nuclear magnetic resonance (nmr) spectral studies of several PGs have been reported (11,48—53). Mass spectral data have also been compiled (54) (see Mass spectrometry Spectroscopy). [Pg.153]

Specific optical rotation values, [a], for starch pastes range from 180 to 220° (5), but for pure amylose and amylopectin fractions [a] is 200°. The stmcture of amylose has been estabUshed by use of x-ray diffraction and infrared spectroscopy (23). The latter analysis shows that the proposed stmcture (23) is consistent with the proposed ground-state conformation of the monomer D-glucopyranosyl units. Intramolecular bonding in amylose has also been investigated with nuclear magnetic resonance (nmr) spectroscopy (24). [Pg.341]

Infrared, nuclear magnetic resonance, ultraviolet, optical rotary dispersion and circular dichroism measurements have been used for the spectral analysis of thiiranes. A few steroidal thiiranes have been reported to possess infrared absorption in the range from 580 to 700 cm The intermediate thiocyanate derivatives (RSCN) have a strong sharp peak at 2130-2160 cm the isomeric isothiocyanate (RNCS) shows a much stronger but broad band at 2040-2180 cm. ... [Pg.42]

Woolley RG (1982) Natural Optical Acitivity and the Molecular Hypothesis. 52 1-35 Wiithrich K (1970) Structural Studies of Hemes and Hemoproteins by Nuclear Magnetic Resonance Spectroscopy. 8 53-121... [Pg.258]

The refinement of other analytical methods, such as electrophoresis [34,36], the various techniques of optical spectroscopy [103-105], and nuclear magnetic resonance [201], is supplemented by the recent advances in real-time affinity measurements [152,202], contributing to the understanding of biomolecular reactivity. Taken together, the improvement of analytical methods will eventually allow a comprehensive characterization of the structure, topology, and properties of the nucleic acid-based supramolecular components under consideration for distinctive applications in nanobiotechnology. [Pg.423]

Exchange reactions can be sometimes investigated by the techniques of polari-metry, nuclear magnetic resonance and electron spin resonance. The optical activity method requires polarimetric measurements on the rate of racemization in mixtures of d-X (or /-X) and /-Y (or d-Y). [Pg.57]

Other optical and spectroscopic techniques are also important, particularly with regard to segmental orientation. Some examples are fluorescence polarization, deuterium nuclear magnetic resonance (NMR), and polarized IR spectroscopy [4,246,251]. Also relevant here is some work indicating that microwave techniques can be used to image elastomeric materials, for example, with regard to internal damage [252,253]. [Pg.374]

Enantiomers have identical chemical and physical properties in the absence of an external chiral influence. This means that 2 and 3 have the same melting point, solubility, chromatographic retention time, infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) spectra. However, there is one property in which chiral compounds differ from achiral compounds and in which enantiomers differ from each other. This property is the direction in which they rotate plane-polarized light, and this is called optical activity or optical rotation. Optical rotation can be interpreted as the outcome of interaction between an enantiomeric compound and polarized light. Thus, enantiomer 3, which rotates plane-polarized light in a clockwise direction, is described as (+)-lactic acid, while enantiomer 2, which has an equal and opposite rotation under the same conditions, is described as (—)-lactic acid. [Pg.5]

Skinner, J. L. and Trommsdorf, H. P. Proton transfer in benzoic acid crystals A chemical spin-boson problem. Theoretical analysis of nuclear magnetic resonance, neutron scattering, and optical experiments, J.Chem.Phys., 89 (1988), 897-907... [Pg.353]

Structural investigations into the degree of branching and into the position and nature of glycosidic bonds and of non-carbohydrate residues in polysaccharides may include periodate oxidation and other procedures such as exhaustive methylation. X-ray diffraction and spectroscopic techniques such as nuclear magnetic resonance and optical rotatory dispersion also give valuable information especially relating to the three-dimensional structures of these polymers. [Pg.327]

The structure of films has been studied by several methods, such as X-ray diffraction, IR spectroscopy and nuclear magnetic resonance (NMR) spectroscopy, although the simplest and least expensive technique is that of optical diffraction measurements. [Pg.474]


See other pages where Optical nuclear magnetic resonance is mentioned: [Pg.75]    [Pg.75]    [Pg.1547]    [Pg.2497]    [Pg.33]    [Pg.302]    [Pg.314]    [Pg.418]    [Pg.163]    [Pg.109]    [Pg.197]    [Pg.294]    [Pg.471]    [Pg.357]    [Pg.26]    [Pg.187]    [Pg.528]    [Pg.5]    [Pg.123]    [Pg.286]    [Pg.236]    [Pg.289]    [Pg.148]    [Pg.187]    [Pg.158]    [Pg.211]    [Pg.313]    [Pg.522]    [Pg.4]    [Pg.691]   
See also in sourсe #XX -- [ Pg.605 ]




SEARCH



Nuclear magnetic resonance optically active

Optical nuclear magnetic resonance effects

Optical resonance

© 2024 chempedia.info