Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins Peterson olefination

Julia-Lithgoe olefination, Peterson olefination, Tebbe olefination, Wittig reaction, Wittig reaction - Schiosser modification ... [Pg.693]

Peterson Olefination review . Synthesis 1984, 384 Organic Reactions 1990, 38 1. [Pg.105]

The phosphorus ylides of the Wittig reaction can be replaced by trimethylsilylmethyl-carbanions (Peterson reaction). These silylated carbanions add to carbonyl groups and can easily be eliminated with base to give olefins. The only by-products are volatile silanols. They are more easily removed than the phosphine oxides or phosphates of the more conventional Wittig or Homer reactions (D.J. Peterson, 1968). [Pg.33]

The Peterson reaction has two more advantages over the Wittig reaction 1. it is sometimes less vulnerable to sterical hindrance, and 2. groups, which are susceptible to nucleophilic substitution, are not attacked by silylated carbanions. The introduction of a methylene group into a sterically hindered ketone (R.K. Boeckman, Jr., 1973) and the syntheses of olefins with sulfur, selenium, silicon, or tin substituents (D. Seebach, 1973 B.T. Grdbel, 1974, 1977) illustrate useful applications. The reaction is, however, more limited and time consuming than the Wittig reaction, since metallated silicon derivatives are difficult to synthesize and their reactions are rarely stereoselective (T.H. Chan, 1974 ... [Pg.33]

The following acid-catalyzed cyclizations leading to steroid hormone precursors exemplify some important facts an acetylenic bond is less nucleophilic than an olelinic bond acetylenic bonds tend to form cyclopentane rather than cyclohexane derivatives, if there is a choice in proton-catalyzed olefin cyclizations the thermodynamically most stable Irons connection of cyclohexane rings is obtained selectively electroneutral nucleophilic agents such as ethylene carbonate can be used to terminate the cationic cyclization process forming stable enol derivatives which can be hydrolyzed to carbonyl compounds without this nucleophile and with trifluoroacetic acid the corresponding enol ester may be obtained (M.B. Gravestock, 1978, A,B P.E. Peterson, 1969). [Pg.279]

Synthesis of olefins by stereospecific rerbctfve elimination of S-hydroxyaikyl selenides (a variant at Peterson olefinatlon) by means of MeSOjCI. HCIO4 or P2I4. [Pg.217]

Lastly, a-trimetfayisflyl enolates have been added to trifluoromethyl ketones to effect Peterson olefination of the tnfluoromethyl ketones [IS (equation 13)... [Pg.621]

The Peterson olefination can be viewed as a silicon variant of the Wittig reaction, the well-known method for the formation of carbon-carbon double bonds. A ketone or aldehyde 1 can react with an a-silyl organometallic compound 2—e.g. with M = Li or Mg—to yield an alkene 3. [Pg.227]

The Peterson olefination is a quite modern method in organic synthesis its mechanism is still not completely understood. " The a-silyl organometallic reagent 2 reacts with the carbonyl substrate 1 by formation of a carbon-carbon single bond to give the diastereomeric alkoxides 4a and 4b upon hydrolysis the latter are converted into /3-hydroxysilanes 5a and 5b ... [Pg.227]

The next step of the Peterson olefination allows for the control of the E Z-ratio of the alkene to be formed by proper choice of the reaction conditions. Treatment of /3-hydroxysilanes 5 with a base such as sodium hydride or potassium hydride leads to preferential -elimination to give alkene 3a as major... [Pg.227]

The above mechanism involves a-opening of the epoxysilane, followed by a 1,2-elimination of a /3-hydroxysilanc (Peterson olefination, Chapter 10). However, it has recently been shown that aj8-dihydroxysilanes, particularly t-butyldimethylsilyl species, undergo an acid-catalysed sila-pinacol rearrangement to produce /J-aldehydo- and /i-kctosilancs (5) ... [Pg.21]

The main utility of Peterson olefination lies in the contrasting stereochemical requirements (6) for elimination, use of base requiring a syn conformation whereas acid conditions demand an anti conformation, with complementary geometrical results ... [Pg.127]

Another method that has been used to prepare phosphaalkenes is the phos-pha-Peterson reaction, a phosphorus analog of the Peterson olefination [46-49]. In this reaction a lithium silylphosphide is treated with an aldehyde or ketone to yield the phosphaalkene (9). Analogous reactions can be conducted with bis(trimethylsilyl)phosphines (10) and ketones (11) using a catalytic quantity of anhydrous base (i.e., NaOH, KOH) [50]. Generally, the reactions proceed cleanly and in high yield. Sufficiently bulky substituents must be employed to stabilize the P=C bond and prevent rapid dimerization to 1,3-diphosphetaines. [Pg.112]

This section deals with reactions that correspond to Pathway C, defined earlier (p. 64), that lead to formation of alkenes. The reactions discussed include those of phosphorus-stabilized nucleophiles (Wittig and related reactions), a a-silyl (Peterson reaction) and a-sulfonyl (Julia olefination) with aldehydes and ketones. These important rections can be used to convert a carbonyl group to an alkene by reaction with a carbon nucleophile. In each case, the addition step is followed by an elimination. [Pg.157]

The anti elimination can also be achieved by converting the (3-silyl alcohols to trifluo-roacetate esters.273 The stereoselectivity of the Peterson olefination depends on the generation of pure syn or anti P-silylalcohols, so several strategies have been developed for their stereoselective preparation.274... [Pg.172]

Scheme 2.19 provides some examples of the Peterson olefination. The Peterson olefination has not been used as widely in synthesis as the Wittig and Wadsworth-Emmons reactions, but it has been used advantageously in the preparation of relatively... [Pg.172]

As is the case with the Wittig and Peterson olefinations, there is more than one point at which the stereoselectivity of the reaction can be determined, depending on the details of the mechanism. Adduct formation can be product determining or reversible. Furthermore, in the reductive mechanism, there is the potential for stereorandomization if radical intermediates are involved. As a result, there is a degree of variability in the stereoselectivity. Fortunately, the modified version using tetrazolyl sulfones usually gives a predominance of the E-isomer. [Pg.175]


See other pages where Olefins Peterson olefination is mentioned: [Pg.519]    [Pg.103]    [Pg.28]    [Pg.227]    [Pg.11]    [Pg.28]    [Pg.42]    [Pg.44]    [Pg.45]    [Pg.46]    [Pg.47]    [Pg.79]    [Pg.86]    [Pg.126]    [Pg.126]    [Pg.133]    [Pg.169]    [Pg.163]    [Pg.245]    [Pg.174]   


SEARCH



Olefinations Peterson

Peterson

© 2024 chempedia.info