Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefins liquid phase hydrogenation

The present economic and environmental incentives for the development of a viable one-step process for MIBK production provide an excellent opportunity for the application of catalytic distillation (CD) technology. Here, the use of CD technology for the synthesis of MIBK from acetone is described and recent progress on this process development is reported. Specifically, the results of a study on the liquid phase kinetics of the liquid phase hydrogenation of mesityl oxide (MO) in acetone are presented. Our preliminary spectroscopic results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups coordinated to the catalyst. An empirical kinetic model was developed which will be incorporated into our three-phase non-equilibrium rate-based model for the simulation of yield and selectivity for the one step synthesis of MIBK via CD. [Pg.261]

In catalysis, adsorbed CO may retard some reactions such as olefin hydrogenation, fuel cell conversion, and enantioselective hydrogenation. For instance, Lercher and coworkers observed the deactivation of Pt/Si02 in the liquid-phase hydrogenation of crotonaldehyde, and ascribed this deactivation to the decomposition of crotonaldehyde on platinum surface to adsorbed CO [138]. Blaser and coworkers found that the addition of a small amount of formic acid decreases the rate of liquid-phase hydrogenation of ethyl pyruvate on cinchonidine-modified Pt/Al203 catalyst, which they explained as the decomposition of formic acid on the catalyst to adsorbed CO. Interestingly, the addition of acetic acid does not decrease the reaction rate, but whether acetic acid decomposes on the catalyst as formic acid does was not mentioned [139]. [Pg.251]

The metal-catalysed hydrogenation of the higher olefins exhibit general features which are similar to those observed with the n-butenes. Thus, for example, the hydrogenation of hex-1-ene over Adams platinum catalyst [144] is accompanied by very low amounts of double-bond migration the relative rates of isomerisation and hydrogenation are in the ratio 0.03 1. Similarly, in the liquid phase hydrogenation of the n-pentenes over platinum—charcoal and iridium—charcoal [145], little or no isomerisation... [Pg.48]

Effects of Surface Modifiers in the Liquid-Phase Hydrogenation of Olefins... [Pg.602]

In this paper, the effect of lead adatoms on the activity of platinum catalysts, in liquid phase hydrogenation of olefinic compounds, is presented. [Pg.612]

Liquid phase hydrogenation of carbon monoxide was carried out using unpromoted and alkali-promoted Fe UFP catalysts and the K-promoted Fe precipitation catalyst. The principal products formed on these catalysts were n-olefins, n-paraffins, alcohols, aldehydes, ketones, carbon dioxide, and water. [Pg.519]

Besides the mirror and addition reactions already discussed, gas phase radicals dimerize, disproportionate, transfer hydrogen, and polymerize olefins. Similar reactions in the liquid phase are an indication (but not proof) of free radical intermediates. [Pg.27]

More recently Hartog and Zwietering (103) used a bromometric technique to measure the small concentrations of olefins formed in the hydrogenation of aromatic hydrocarbons on several catalysts in the liquid phase. The maximum concentration of olefin is a function of both the catalyst and the substrate for example, at 25° o-xylene yields 0.04, 1.4, and 3.4 mole % of 1,2-dimethylcyclohexene on Raney nickel, 5% rhodium on carbon, and 5% ruthenium on carbon, respectively, and benzene yields 0.2 mole % of cyclohexene on ruthenium black. Although the cyclohexene derivatives could not be detected by this method in reactions catalyzed by platinum or palladium, a sensitive gas chromatographic technique permitted Siegel et al. (104) to observe 1,4-dimethyl-cyclohexene (0.002 mole %) from p-xylene and the same concentrations of 1,3- and 2,4-dimethylcyclohexene from wi-xylene in reductions catalyzed by reduced platinum oxide. [Pg.158]

A mechanism has been proposed recently by O Neal and Blumstein for the gas-phase ozone-olefin reaction. This mechanism postulates that molozonide-biradical equilibrium is reached fast and postulates a competition between a-, 8-, and y-hydrogen abstraction reactions and the classical mechanism proposed by Criegee for the liquid-phase reaction. The main features of the Criegee mechanism (Figure 3-9) are the formation, from the initial molozonide, of the major carbonyl products and a second biradical intermediate, the zwitterion. The decomposition pathways of the zwitterion comprise unimolecular re-... [Pg.72]

Unlike boron fluoride, titanium tetrachloride does not catalyze the liquid phase polymerization of isobutylene under anhydrous conditions (Plesch et al., 83). The addition of titanium tetrachloride to a solution of the olefin in hexane at —80° failed to cause any reaction. Instantaneous polymerization occurred when moist air was added. Oxygen, nitrogen, carbon dioxide, and hydrogen chloride had no promoting effect. Ammonia and sulfur dioxide combined with the catalyst if these were added in small quantity only, subsequent addition of moist air permitted the polymerization to occur. Ethyl alcohol and ethyl ether, on the other hand, prevented the polymerization even on subsequent addition of moist air. They may be regarded as true poisons. [Pg.73]

Evidence in support of a carbonium ion type of mechanism for low temperature polymerization was also obtained in an investigation of the kinetics of the homogeneous liquid phase polymerization of propene in the presence of aluminum bromide and hydrogen bromide at about —78° (Fontana and Kidder, 89). The rate of reaction is approximately proportional to the concentration of the promoter, no polymerization occurring in its absence. During the main portion of the reaction, the rate is independent of the monomer concentration toward the end, it decreases, due apparently to the low-concentration of the monomer, addition of more olefin resulting in an increase in the rate. It was concluded that the reaction involves an active complex, which may be regarded as a carbonium ion coupled with an anion ... [Pg.77]

The plausible deoxygenation routes for production of diesel like hydrocarbons from fatty acids and their derivates are decarboxylation, decarbonylation, hydrogenation and decarbonylation/hydrogenation. The main focus in this study is put on liquid phase decarboxylation and decarbonylation reactions, as depicted in Figure 1. Decarboxylation is carried out via direct removal of the carboxyl group yielding carbon dioxide and a linear paraffinic hydrocarbon, while the decarbonylation reaction yields carbon monoxide, water and a linear olefinic hydrocarbon. [Pg.416]


See other pages where Olefins liquid phase hydrogenation is mentioned: [Pg.172]    [Pg.510]    [Pg.272]    [Pg.233]    [Pg.602]    [Pg.29]    [Pg.78]    [Pg.202]    [Pg.281]    [Pg.71]    [Pg.322]    [Pg.293]    [Pg.72]    [Pg.109]    [Pg.313]    [Pg.227]    [Pg.55]    [Pg.60]    [Pg.61]    [Pg.391]    [Pg.442]    [Pg.261]    [Pg.300]    [Pg.229]    [Pg.1335]    [Pg.1436]    [Pg.27]    [Pg.104]    [Pg.506]    [Pg.11]    [Pg.141]    [Pg.519]    [Pg.520]    [Pg.520]    [Pg.395]    [Pg.37]    [Pg.117]   
See also in sourсe #XX -- [ Pg.321 ]




SEARCH



Hydrogen olefinic

Liquid hydrogen

Liquid phase hydrogenation

Olefin hydrogenation

Phase hydrogenation

© 2024 chempedia.info