Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Olefin transition-metal complexes bonding

Transition metal complexes act as templates that regulate organic reactions that occur in the coordination sphere (4). Ligands are often activated or stabilized by participation of metal d orbitals, where the central metals are electronically amphoteric in contrast to the main group elements, which normally act as Lewis acids. The bonding scheme of an olefin-transition metal complex is illustrated in Scheme 2. The olefin 7T electrons are donated to a vacant metal orbital to make a a-type bond the metal d elections are back-donated to olefin anti-bonding orbitals with the same symmetry to form a ir-type bond. In this way, the olefin is activated by formal electron promotion from the tt to tt orbital, as... [Pg.205]

Figure 5.1. Representation of 7r-bonding in olefin-transition-metal complexes. Figure 5.1. Representation of 7r-bonding in olefin-transition-metal complexes.
Two possible reasons may be noted by which just the coordinatively insufficient ions of the low oxidation state are necessary to provide the catalytic activity in olefin polymerization. First, the formation of the transition metal-carbon bond in the case of one-component catalysts seems to be realized through the oxidative addition of olefin to the transition metal ion that should possess the ability for a concurrent increase of degree of oxidation and coordination number (177). Second, a strong enough interaction of the monomer with the propagation center resulting in monomer activation is possible by 7r-back-donation of electrons into the antibonding orbitals of olefin that may take place only with the participation of low-valency ions of the transition metal in the formation of intermediate 71-complexes. [Pg.203]

Sakaki S (2005) Theoretical Studies of C-H s-Bond Activation and Related by Transition-Metal Complexes. 12 31-78 Satoh T, see Miura M (2005) 14 1-20 Satoh T, see Miura M (2005) 14 55-84 Savoia D (2005) Progress in the Asymmetric Synthesis of 1,2-Diamines from Azomethine Compounds. 15 1-58 Schmalz HG, Gotov B, Bbttcher A (2004) Natural Product Synthesis. 7 157-180 Schmidt B, Hermanns J (2004) Olefin Metathesis Directed to Organic Synthesis Principles and Applications. 13 223-267... [Pg.286]

Several transition metal complexes can catalyze the exchange of partners of two double bonds. Known as the olefin metathesis reaction, this process can be used to close or open rings, as well to interchange double-bond components. [Pg.761]

The mechanism for the reaction catalyzed by cationic palladium complexes (Scheme 24) differs from that proposed for early transition metal complexes, as well as from that suggested for the reaction shown in Eq. 17. For this catalyst system, the alkene substrate inserts into a Pd - Si bond a rather than a Pd-H bond [63]. Hydrosilylation of methylpalladium complex 100 then provides methane and palladium silyl species 112 (Scheme 24). Complex 112 coordinates to and inserts into the least substituted olefin regioselectively and irreversibly to provide 113 after coordination of the second alkene. Insertion into the second alkene through a boat-like transition state leads to trans cyclopentane 114, and o-bond metathesis (or oxidative addition/reductive elimination) leads to the observed trans stereochemistry of product 101a with regeneration of 112 [69]. [Pg.241]

Palladium(II) complexes possessing bidentate ligands are known to efficiently catalyze the copolymerization of olefins with carbon monoxide to form polyketones.594-596 Sulfur dioxide is an attractive monomer for catalytic copolymerizations with olefins since S02, like CO, is known to undergo facile insertion reactions into a variety of transition metal-alkyl bonds. Indeed, Drent has patented alternating copolymerization of ethylene with S02 using various palladium(II) complexes.597 In 1998, Sen and coworkers also reported that [(dppp)PdMe(NCMe)]BF4 was an effective catalyst for the copolymerization of S02 with ethylene, propylene, and cyclopentene.598 There is a report of the insertion reactions of S02 into PdII-methyl bonds and the attempted spectroscopic detection of the copolymerization of ethylene and S02.599... [Pg.607]

The band at 1600 cm-1 due to a double-bond stretch shows that chemisorbed ethylene is olefinic C—H stretching bands above 3000 cm-1 support this view. Interaction of an olefin with a surface with appreciable heat suggests 7r-bonding is involved. Powell and Sheppard (4-1) have noted that the spectrum of olefins in 7r-bonded transition metal complexes appears to involve fundamentals similar to those of the free olefin. Two striking differences occur. First, infrared forbidden bands for the free olefin become allowed for the lower symmetry complex second, the fundamentals of ethylene corresponding to v and v% shift much more than the other fundamentals. In Table III we compare the fundamentals observed for liquid ethylene (42) and a 7r-complex (43) to those observed for chemisorbed ethylene. Two points are clear from Table III. First, bands forbidden in the IR for gaseous ethylene are observed for chemisorbed ethyl-... [Pg.21]

Professor Stone s paper points out that the reactivity of [ (ti-C5H5) (OC) 2WsCR] towards transition metal complexes is similar to that of an alkyne. It would be of interest to examine this compound and several of its derivatives which contain OW double bonds with respect to their reactivity patterns towards the BH3 group to determine if reactions analogous to the hydroboration reaction of alkynes and olefins would occur (1) or reactions similar to the attempted hydroboration described below would take place. [Pg.383]

Thus far, we have discussed the transition metal complex-catalyzed hydrogenation of C=C, C=0, and C N bonds. In this section, another type of transition metal complex-mediated reaction, namely, the hydroformylation of olefins, is presented. [Pg.384]

Figure 2. Hydroboration reactions of olefin catalyzed by early transition metal complexes. The proposed reaction mechanism involves a o-bond metathesis step. (M = Lanthanide or other early transition metals.)... Figure 2. Hydroboration reactions of olefin catalyzed by early transition metal complexes. The proposed reaction mechanism involves a o-bond metathesis step. (M = Lanthanide or other early transition metals.)...
As mentioned in the introduction, early transition metal complexes are also able to catalyze hydroboration reactions. Reported examples include mainly metallocene complexes of lanthanide, titanium and niobium metals [8, 15, 29]. Unlike the Wilkinson catalysts, these early transition metal catalysts have been reported to give exclusively anti-Markonikov products. The unique feature in giving exclusively anti-Markonikov products has been attributed to the different reaction mechanism associated with these catalysts. The hydroboration reactions catalyzed by these early transition metal complexes are believed to proceed with a o-bond metathesis mechanism (Figure 2). In contrast to the associative and dissociative mechanisms discussed for the Wilkinson catalysts in which HBR2 is oxidatively added to the metal center, the reaction mechanism associated with the early transition metal complexes involves a a-bond metathesis step between the coordinated olefin ligand and the incoming borane (Figure 2). The preference for a o-bond metathesis instead of an oxidative addition can be traced to the difficulty of further oxidation at the metal center because early transition metals have fewer d electrons. [Pg.204]

During the past two decades, within the series of our studies, we have developed a silylative coupling reaction of olefins with vinylsubstituted siHcon compounds which takes place in the presence of transition-metal complexes (e.g. mthenium and rhodium) that initially contain or generate M—H and M—Si bonds (for reviews, see Refs [5] and [6]). The reaction involves activation of the =C—H bond of olefins and cleavage of the =C—Si bond of vinylsilane. The reaction, which is catalyzed by complexes of the type [ M( x-OSiMe3)(cod) 2] (where M = Rh, Ir) occurs according to Equation 14.12 [71, 72). [Pg.360]

The Dewar-Chatt-Duncanson model of the binding of an olefin in a transition metal complex involves two types of interactions. Transfer of electron density from the relatively high-lying olefinic ic-orbital to the metal (cf. 20) represents a Lewis acid Lewis base interaction (a-bonding). A metal-olefin jr-bond due to interaction... [Pg.31]

Asymmetric synthesis (i) has gained new momentum with the potential k use of homogeneous catalysts. The use of a transition metal complex with chiral ligands to catalyze a synthesis asymmetrically from a prochiral substrate is beneficial in that resolution of a normally obtained racemate product may be avoided. In certain catalytic hydrogenations of olefinic bonds, optical purities approaching 100% have been attained (2,3,4,5) hydrogenations of ketones (6,... [Pg.129]


See other pages where Olefin transition-metal complexes bonding is mentioned: [Pg.142]    [Pg.486]    [Pg.21]    [Pg.283]    [Pg.164]    [Pg.73]    [Pg.18]    [Pg.264]    [Pg.34]    [Pg.511]    [Pg.69]    [Pg.192]    [Pg.2]    [Pg.95]    [Pg.328]    [Pg.297]    [Pg.61]    [Pg.381]    [Pg.231]    [Pg.368]    [Pg.726]    [Pg.15]    [Pg.149]    [Pg.12]    [Pg.61]    [Pg.571]    [Pg.579]   
See also in sourсe #XX -- [ Pg.14 , Pg.15 , Pg.16 , Pg.17 , Pg.18 , Pg.19 , Pg.20 , Pg.21 , Pg.22 , Pg.23 , Pg.24 , Pg.25 , Pg.26 ]




SEARCH



Bond olefinic

Bonding metal olefin complexes

Olefin complexation

Olefin complexes

Olefin-metal complexes

Olefines, complexes

Representation of 7r-bonding in olefin-transition-metal complexes

Transition metal complexes, olefin

© 2024 chempedia.info