Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numerical solution process

A numerical solution method is said to be stable if the method does not magnify the errors that appear during the numerical solution process. This property is relevant as a consistent discretization scheme provides no guarantee that the solution of the discretized equation system will become an accurate solution of the differential equation in the limit of small step size. The stability of low order numerical schemes applied to idealized problems can be analyzed by the von Neumann s method. However, when solving relevant, non-linear and coupled reactor model equations with complex boundary... [Pg.989]

Another important factor for the successful performance of a discretization scheme is its stability. In simple terms, a numerical solution method is said to be stable if it does not magnify the errors that appear in the course of a numerical solution process. For unsteady problems, stability guarantees that the numerical method yields a bounded solution, provided that the solution of... [Pg.1116]

No a priori information about the unknown profile is used in this algorithm, and the initial profile to start the iterative process is chosen as (z) = 1. Moreover, the solution of the forward problem at each iteration can be obtained with the use of the scattering matrices concept [8] instead of a numerical solution of the Riccati equation (4). This allows to perform reconstruction in a few seconds of a microcomputer time. The whole algorithm can be summarized as follows ... [Pg.129]

Families of finite elements and their corresponding shape functions, schemes for derivation of the elemental stiffness equations (i.e. the working equations) and updating of non-linear physical parameters in polymer processing flow simulations have been discussed in previous chapters. However, except for a brief explanation in the worked examples in Chapter 2, any detailed discussion of the numerical solution of the global set of algebraic equations has, so far, been avoided. We now turn our attention to this important topic. [Pg.197]

As mentioned in Chapter 2, the numerical solution of the systems of algebraic equations is based on the general categories of direct or iterative procedures. In the finite element modelling of polymer processing problems the most frequently used methods are the direet methods. [Pg.199]

Dyna.micPerforma.nce, Most models do not attempt to separate the equiUbrium behavior from the mass-transfer behavior. Rather they treat adsorption as one dynamic process with an overall dynamic response of the adsorbent bed to the feed stream. Although numerical solutions can be attempted for the rigorous partial differential equations, simplifying assumptions are often made to yield more manageable calculating techniques. [Pg.286]

Numerous variations exist in the electroless plating solutions, processes, and techniques employed both in laboratory and commercial form, to create a great variety of products (39). AH produce a layer of highly conductive copper in specified areas. Modem electroless copper films have a ductiHty and conductivity identical to that of electrolytic copper (40). The three basic classes of copper baths are... [Pg.110]

Starting with an initial value of and knowing c t), Eq. (8-4) can be solved for c t + At). Once c t + At) is known, the solution process can be repeated to calciilate c t + 2At), and so on. This approach is called the Euler integration method while it is simple, it is not necessarily the best approach to numerically integrating nonlinear differential equations. To achieve accurate solutions with an Eiiler approach, one often needs to take small steps in time. At. A number of more sophisticated approaches are available that allow much larger step sizes to be taken but require additional calculations. One widely used approach is the fourth-order Bunge Kutta method, which involves the following calculations ... [Pg.720]

Here, we shall examine a series of processes from the viewpoint of their kinetics and develop model reactions for the appropriate rate equations. The equations are used to andve at an expression that relates measurable parameters of the reactions to constants and to concentration terms. The rate constant or other parameters can then be determined by graphical or numerical solutions from this relationship. If the kinetics of a process are found to fit closely with the model equation that is derived, then the model can be used as a basis for the description of the process. Kinetics is concerned about the quantities of the reactants and the products and their rates of change. Since reactants disappear in reactions, their rate expressions are given a... [Pg.109]

It may happen that many steps are needed before this iteration process converges, and the repeated numerical solution of Eqs. III.21 and III.18 becomes then a very tedious affair. In such a case, it is usually better to try to plot the approximate eigenvalue E(rj) as a function of the scale factor rj, particularly since one can use the value of the derivative BE/Brj, too. The linear system (Eq. III. 19) may be written in matrix form HC = EC and from this and the normalization condition Ct C = 1 follows... [Pg.270]

The next two steps after the development of a mathematical process model and before its implementation to "real life" applications, are to handle the numerical solution of the model s ode s and to estimate some unknown parameters. The computer program which handles the numerical solution of the present model has been written in a very general way. After inputing concentrations, flowrate data and reaction operating conditions, the user has the options to select from a variety of different modes of reactor operation (batch, semi-batch, single continuous, continuous train, CSTR-tube) or reactor startup conditions (seeded, unseeded, full or half-full of water or emulsion recipe and empty). Then, IMSL subroutine DCEAR handles the numerical integration of the ode s. Parameter estimation of the only two unknown parameters e and Dw has been described and is further discussed in (32). [Pg.223]

Dynamic simulations are also possible, and these require solving differential equations, sometimes with algebraic constraints. If some parts of the process change extremely quickly when there is a disturbance, that part of the process may be modeled in the steady state for the disturbance at any instant. Such situations are called stiff, and the methods for them are discussed in Numerical Solution of Ordinary Differential Equations as Initial-Value Problems. It must be realized, though, that a dynamic calculation can also be time-consuming and sometimes the allowable units are lumped-parameter models that are simplifications of the equations used for the steady-state analysis. Thus, as always, the assumptions need to be examined critically before accepting the computer results. [Pg.90]

CFD may be loosely thought of as computational methods applied to the study of quantities that flow. This would include both methods that solve differential equations and finite automata methods that simulate the motion of fluid particles. We shall include both of these in our discussions of the applications of CFD to packed-tube simulation in Sections III and IV. For our purposes in the present section, we consider CFD to imply the numerical solution of the Navier-Stokes momentum equations and the energy and species balances. The differential forms of these balances are solved over a large number of control volumes. These small control volumes when properly combined form the entire flow geometry. The size and number of control volumes (mesh density) are user determined and together with the chosen discretization will influence the accuracy of the solutions. After boundary conditions have been implemented, the flow and energy balances are solved numerically an iteration process decreases the error in the solution until a satisfactory result has been reached. [Pg.315]


See other pages where Numerical solution process is mentioned: [Pg.676]    [Pg.439]    [Pg.1093]    [Pg.676]    [Pg.439]    [Pg.1093]    [Pg.2925]    [Pg.17]    [Pg.18]    [Pg.79]    [Pg.129]    [Pg.399]    [Pg.388]    [Pg.508]    [Pg.720]    [Pg.722]    [Pg.487]    [Pg.612]    [Pg.208]    [Pg.388]    [Pg.87]    [Pg.523]    [Pg.524]    [Pg.592]    [Pg.649]    [Pg.295]    [Pg.10]    [Pg.344]    [Pg.160]    [Pg.661]    [Pg.312]    [Pg.727]    [Pg.52]    [Pg.55]    [Pg.90]    [Pg.165]    [Pg.491]    [Pg.166]    [Pg.217]    [Pg.229]   


SEARCH



Numerical solution

Solute process

Solution processability

Solution processes

Solution processing

Solutizer process

© 2024 chempedia.info