Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Numerical methods boundary conditions

The alternative simulation approaches are based on molecular dynamics calculations. This is conceptually simpler that the Monte Carlo method the equations of motion are solved for a system of A molecules, and periodic boundary conditions are again imposed. This method pennits both the equilibrium and transport properties of the system to be evaluated, essentially by numerically solvmg the equations of motion... [Pg.564]

Renardy, M., 1997. Imposing no boundary condition at outflow why does it work Int. J. Numer. Methods Fluids TA, 413-417. [Pg.110]

Tanner, R.I. 2000. Engineering Rheology, 2nd edti, Oxford University Press, Oxford. Taylor, C., Ranee, J. and Medwell, J. O., 1985. A note on the imposition of traction boundary conditions when using FEM for solving incompressible flow problems. Comnmn. Appl. Numer. Methods 1, 113-121. [Pg.110]

When q is zero, Eq. (5-18) reduces to the famihar Laplace equation. The analytical solution of Eq. (10-18) as well as of Laplaces equation is possible for only a few boundary conditions and geometric shapes. Carslaw and Jaeger Conduction of Heat in Solids, Clarendon Press, Oxford, 1959) have presented a large number of analytical solutions of differential equations apphcable to heat-conduction problems. Generally, graphical or numerical finite-difference methods are most frequently used. Other numerical and relaxation methods may be found in the general references in the Introduction. The methods may also be extended to three-dimensional problems. [Pg.556]

With these two-point boundary conditions the dispersion equation, Eq. (23-50), may be integrated by the shooting method. Numerical solutions for first- and second-order reaciions are plotted in Fig. 23-15. [Pg.2089]

Numerous attempts have been made to develop hybrid methodologies along these lines. An obvious advantage of the method is its handiness, while its disadvantage is an artifact introduced at the boundary between the solute and solvent. You may obtain agreement between experiments and theory as close as you desire by introducing many adjustable parameters associated with the boundary conditions. However, the more adjustable parameters are introduced, the more the physical significance of the parameter is obscured. [Pg.418]

Numerical simulation of hood performance is complex, and results depend on hood design, flow restriction by surrounding surfaces, source strength, and other boundary conditions. Thus, most currently used method.s of hood design are based on experimental studies and analytical models. According to these models, the exhaust airflow rate is calculated based on the desired capture velocity at a particular location in front of the hood. It is easier... [Pg.544]

A solution to Equation (8.12) together with its boundary conditions gives a r, z) at every point in the reactor. An analytical solution is possible for the special case of a first-order reaction, but the resulting infinite series is cumbersome to evaluate. In practice, numerical methods are necessary. [Pg.271]

The numerical techniques of Chapter 8 can be used for the simultaneous solution of Equation (9.3) and as many versions of Equation (9.1) as are necessary. The methods are unchanged except for the discretization stability criterion and the wall boundary condition. When the velocity profile is flat, the stability criterion is most demanding when at the centerline ... [Pg.321]

A number of authors have considered channel cross-sections other than rectangular [102-104]. Figure 2.17 shows some examples of cross-sections for which friction factors and Nusselt numbers were computed. In general, an analytical solution of the Navier-Stokes and the enthalpy equations in such channel geometries would be involved owing to the implementation of the wall boundary condition. For this reason, usually numerical methods are employed to study laminar flow and heat transfer in channels with arbitrary cross-sectional geometry. [Pg.171]

At the same time it is worth to notice that in modern numerical methods of a solution of boundary value problems, based on replacement of differential equations by finite difference, these steps are performed simultaneously. In accordance with the theorem of uniqueness, the field inside the volume V is defined by a distribution of masses inside this volume and boundary conditions, and correspondingly it is natural to derive an equation establishing this link. With this purpose in mind we will again proceed from Gauss s theorem,... [Pg.33]

Since MPC dynamics yields the hydrodynamic equations on long distance and time scales, it provides a mesoscopic simulation algorithm for investigation of fluid flow that complements other mesoscopic methods. Since it is a particle-based scheme it incorporates fluctuations, which are essential in many applications. For macroscopic fluid flow averaging is required to obtain the deterministic flow fields. In spite of the additional averaging that is required the method has the advantage that it is numerically stable, does not suffer from lattice artifacts in the structure of the Navier-Stokes equations, and boundary conditions are easily implemented. [Pg.107]

The solution of Eqs. (9) is straightforward if the six parameters are known and the boundary conditions are specified. Two boundary conditions are necessary for each equation. Pavlica and Olson (PI) have discussed the applicability of the Wehner-Wilhelm boundary conditions (W3) to two-phase mass-transfer model equations, and have described a numerical method for solving these equations. In many cases this is not necessary, for the second-order differentials can be neglected. Methods for evaluating the dimensionless groups in Eqs. (9) are given in Section II,B,1. [Pg.24]

The computational procedure can now be explained with reference to Fig. 19. Starting from points Pt and P2, Eqs. (134) and (135) hold true along the c+ characteristic curve and Eqs. (136) and (137) hold true along the c characteristic curve. At the intersection P3 both sets of equations apply and hence they may be solved simultaneously to yield p and W for the new point. To determine the conditions at the boundary, Eq. (135) is applied with the downstream boundary condition, and Eq. (137) is applied with the upstream boundary condition. It goes without saying that in the numerical procedure Eqs. (135) and (137) will be replaced by finite difference equations. The Newton-Raphson method is recommended by Streeter and Wylie (S6) for solving the nonlinear simultaneous equations. In the specified-time-... [Pg.194]

CFD may be loosely thought of as computational methods applied to the study of quantities that flow. This would include both methods that solve differential equations and finite automata methods that simulate the motion of fluid particles. We shall include both of these in our discussions of the applications of CFD to packed-tube simulation in Sections III and IV. For our purposes in the present section, we consider CFD to imply the numerical solution of the Navier-Stokes momentum equations and the energy and species balances. The differential forms of these balances are solved over a large number of control volumes. These small control volumes when properly combined form the entire flow geometry. The size and number of control volumes (mesh density) are user determined and together with the chosen discretization will influence the accuracy of the solutions. After boundary conditions have been implemented, the flow and energy balances are solved numerically an iteration process decreases the error in the solution until a satisfactory result has been reached. [Pg.315]

In case an analytical solution of Eqs. (6) and (7) is not available, which is normally the case for non-linear isotherms, a solution for the equations with the proper boundary conditions can nevertheless be obtained numerically by the method of orthogonal collocation [38,39]. [Pg.244]


See other pages where Numerical methods boundary conditions is mentioned: [Pg.107]    [Pg.17]    [Pg.17]    [Pg.109]    [Pg.260]    [Pg.293]    [Pg.106]    [Pg.110]    [Pg.465]    [Pg.951]    [Pg.292]    [Pg.387]    [Pg.227]    [Pg.387]    [Pg.154]    [Pg.61]    [Pg.374]    [Pg.146]    [Pg.296]    [Pg.447]    [Pg.239]    [Pg.56]    [Pg.24]    [Pg.415]    [Pg.5]    [Pg.50]    [Pg.72]    [Pg.101]    [Pg.121]    [Pg.359]    [Pg.64]    [Pg.327]    [Pg.343]    [Pg.175]    [Pg.358]   
See also in sourсe #XX -- [ Pg.351 , Pg.352 , Pg.470 ]




SEARCH



Boundary methods

Method numerical

Numerical conditioning

© 2024 chempedia.info