Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Synthetic nucleosides

Telomerase activity can also be inhibited by the direct binding of small non-nucleosidic synthetic compounds to the hTERT reverse transcriptase component of telomerase. Schnapp and coworkers have recently reported the first mixed-type noncompetitive (70) catalytic telomerase inhibitor, (2-((E)-3-naphtalen-2-yl-but-2-enoylamino)-benzoic acid) (BIBR1532), which causes telomere shortening and senescence characteristics in various types of cancer cells in vitro and in vivo in mouse xenograft models at nanomolar concentrations (71). [Pg.367]

Cristalli, G. Costanzi, S. Lambertucci, C. Taffi, S. Vittori, S. Volpini, R., Purine and dea-zapurine nucleosides synthetic approaches, molecular modelling and biological activity, II Farmaco. 2003, 58, 193-204... [Pg.165]

El Daly H, Martens UM. Telomerase inhibition and telomere targeting in hematopoietic cancer cell lines with small non-nucleosidic synthetic compounds (BIBR1532). Methods Mol Biol 2007-, 405 47-60. [Pg.206]

We shall describe a specific synthetic example for each protective group given above. Regiosdective proteaion is generally only possible if there are hydroxyl groups of different sterical hindrance (prim < sec < tert equatorial < axial). Acetylation has usually been effected with acetic anhydride. The acetylation of less reactive hydroxyl groups is catalyzed by DMAP (see p.l44f.). Acetates are stable toward oxidation with chromium trioxide in pyridine and have been used, for example, for protection of steroids (H.J.E. Loewenthal, 1959), carbohydrates (M.L. Wolfrom, 1963 J.M. Williams, 1967), and nucleosides (A.M. Micbelson, 1963). The most common deacetylation procedures are ammonolysis with NH in CH OH and methanolysis with KjCO, or sodium methoxide. [Pg.158]

Synthetic oligonucleotides may be used as "primers and be elongated stepwise with the aid of polynucleotide phosphorylase (PNPase) and nucleoside diphosphates. [Pg.225]

Regioselective 1,4-azidohydroxylation to give 309 takes place by the reaction of the vinyloxirane 308 with sodium azide[188]. The reaction of the cyclopen-tadiene monoepoxide 310 with sodium azide or purine base offers a good synthetic method for the carbocyclic nucleoside 311(189-191]... [Pg.332]

The synthetic scheme typically involves chain-extending addition of protected mononucleotides to a nucleoside bound covalentiy at the 3 -hydroxyl to an inert siUca-based soHd support, such as controlled pore glass (Fig. 11). The initial base-protected 5 -O-dimethoxytrityl (DMT) deoxynucleoside is linked to the soHd support via the reaction of a siUca-bound amino-silane and the -nitrophenylester of the 3 -succinylated nucleoside, yielding a 3 -terminal nucleoside attached to the soHd support (1) (Fig. 11). Chain elongation requites the removal of the 5 -DMT protecting group. [Pg.257]

The prevalence of diols in synthetic planning and in natural sources (e.g., in carbohydrates and nucleosides) has led to the development of a number of protective groups of valuing stability to a substantial array of reagents. Dioxolanes and diox-anes are the most common protective groups for diols. The ease of formation follows the order ... [Pg.118]

Although the term nucleoside was once limited to the compounds in Table 28.2 and a few others, cunent use is more permissive. Pyrimidine derivatives of D-arabinose, for exfflnple, occur in the free state in certain sponges and are called spongonticleosides. The powerful antiviral drug ribavirin, used to treat hepatitis C and Lassa fever, is a synthetic nucleoside analog in which the base, rather than being a pyrimidine or purine, is a triazole. [Pg.1160]

Aminopyrazolo[4,3-d]pyrimidine moiety (47) is present in several nucleosides of both biological and synthetic origins. Among them, formycin (47, R = 3/3-D-ribofuranozyl) is of particular interest as a C-nucleoside analog of adenosine. [Pg.73]

Cladribine (2-Chlordeoxyadenosine) is a synthetic purine nucleoside that is converted to an active cytotoxic metabolite by the deoxycytidine kinase. The drug is relatively selective for both normal and malignant lymphoid cells. [Pg.150]

From this observation of the inhibition by adenosine, and other observations, Newell and Tucker suspected the existence of a common synthetic pathway for adenosine and thiamine, and proved (with the help of a collection of mutants) that the bifurcation occurred after the 5-amino- l-(P-D-ribofura-nosyl)imidazole 5 -phosphate (46) step (Scheme 23). Finally, they found that 5-amino-l-(0-D-ribofuranosyl)imidazole (47), labeled with l4C in the imidazole ring, was incorporated into pyramine without significant loss of molar radioactivity by a mutant that is able to use this nucleoside (presumably after phosphorylation).53,54... [Pg.292]

The high chemoselectivity for the Baeyer-Villiger process was utilized in the synthetic elaboration of another hetero-bicyclic substrate. The biooxidation only provides the expected unsaturated lactone in a desymmetrization reaction without compromising the olefin functionality. The biotransformation product was then converted to pivotal intermediates for C-nucleosides like showdomycin, tetrahydro-furan natural products like kumausyne, and goniofufurone analogs in subsequent chemical operations (Scheme 9.17) [161]. [Pg.245]

Synthetic nonhydrolyzable analogs of nucleoside triphosphates (Figure 33-13) allow investigators to distinguish the effects of nucleotides due to phosphoryl transfer from effects mediated by occupancy of allosteric nucleotide-binding sites on regulated enzymes. [Pg.291]

C. Oligo- and Poly-nucleotides.—The stepwise enzymatic synthesis of internucleotide bonds has been reviewed. A number of polynucleotides containing modified bases have been synthesised " in the past year from nucleoside triphosphates with the aid of a polymerase enzyme, and the enzymatic synthesis of oligodeoxyribonucleotides using terminal deoxynucleotidyl transferase has been studied. Primer-independent polynucleotide phosphorylase from Micrococcus luteus has been attached to cellulose after the latter has been activated with cyanogen bromide. The preparation of insolubilized enzyme has enabled large quantities of synthetic polynucleotides to be made. The soluble enzyme has been used to prepare various modified polycytidylic acids. ... [Pg.129]

Lamivudine (Epivir-HBV) is an oral synthetic cytosine nucleoside analogue having antiviral effects against HIV and hepatitis B virus. In patients with chronic hepatitis B, lamivudine is effective in suppressing hepatitis B viral replication, normalizing... [Pg.354]


See other pages where Synthetic nucleosides is mentioned: [Pg.31]    [Pg.31]    [Pg.219]    [Pg.220]    [Pg.1160]    [Pg.209]    [Pg.71]    [Pg.305]    [Pg.482]    [Pg.142]    [Pg.288]    [Pg.1014]    [Pg.368]    [Pg.23]    [Pg.55]    [Pg.97]    [Pg.85]    [Pg.128]    [Pg.148]    [Pg.289]    [Pg.387]    [Pg.37]    [Pg.504]    [Pg.245]    [Pg.246]    [Pg.254]    [Pg.290]    [Pg.908]    [Pg.131]    [Pg.300]    [Pg.191]    [Pg.148]    [Pg.313]    [Pg.337]   
See also in sourсe #XX -- [ Pg.17 ]




SEARCH



Bicyclic nucleosides, synthetic approaches

© 2024 chempedia.info