Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic substitution second-order

FIGURE 2.10 Differentiation of SN1 (substitution nucleophilic unimolecular, first order) and SN2 (substitution nucleophilic bimolecular, second order) reactions. [Pg.17]

It was suggested that, although the kinetics of the substitution reactions of [Pt(H20)4] are first order in nucleophile concentration, the similarity of the second-order rate constants for the entry of Mc2SO, HgCl and H2O indicated a dissociative activation and since other nucleophiles have second-order rate constants that are strongly dependent upon their nature, an crossover was suggested. This mechanistic duality is not supported by the AV for water exchange, which is fully consistent with associative activation. ... [Pg.336]

The reactions of 4-(4 -nitrophenyl)-4-X-butan-2-one (X = Cl, OTs) with added bases/nucleophiles show second-order kinetics. It is concluded that these substitution and elimination reactions are of concerted 5ivr2 type and irreversible ElcB type, respectively. The discussion involves Brpnsted plots. [Pg.367]

Hughes and Ingold interpreted second order kinetic behavior to mean that the rate determining step is bimolecular that is that both hydroxide ion and methyl bromide are involved at the transition state The symbol given to the detailed description of the mech anism that they developed is 8 2 standing for substitution nucleophilic bimolecular... [Pg.330]

The first mechanistic studies of silanol polycondensation on the monomer level were performed in the 1950s (73—75). The condensation of dimethyl sil oxanediol in dioxane exhibits second-order kinetics with respect to diol and first-order kinetics with respect to acid. The proposed mechanism involves the protonation of the silanol group and subsequent nucleophilic substitution at the siHcone (eqs. 10 and 11). [Pg.45]

The points that we have emphasized in this brief overview of the S l and 8 2 mechanisms are kinetics and stereochemistry. These features of a reaction provide important evidence for ascertaining whether a particular nucleophilic substitution follows an ionization or a direct displacement pathway. There are limitations to the generalization that reactions exhibiting first-order kinetics react by the Sj l mechanism and those exhibiting second-order kinetics react by the 8 2 mechanism. Many nucleophilic substitutions are carried out under conditions in which the nucleophile is present in large excess. When this is the case, the concentration of the nucleophile is essentially constant during die reaction and the observed kinetics become pseudo-first-order. This is true, for example, when the solvent is the nucleophile (solvolysis). In this case, the kinetics of the reaction provide no evidence as to whether the 8 1 or 8 2 mechanism operates. [Pg.269]

In general, the reaction between a phenol and an aldehyde is classified as an electrophilic aromatic substitution, though some researchers have classed it as a nucleophilic substitution (Sn2) on aldehyde [84]. These mechanisms are probably indistinguishable on the basis of kinetics, though the charge-dispersed sp carbon structure of phenate does not fit our normal concept of a good nucleophile. In phenol-formaldehyde resins, the observed hydroxymethylation kinetics are second-order, first-order in phenol and first-order in formaldehyde. [Pg.883]

A mechanism that accounts for both the inversion of configuration and the second-order kinetics that are observed with nucleophilic substitution reactions was suggested in 1937 by E. D. Hughes and Christopher Ingold, who formulated what they called the SN2 reaction—short for substitution, nucleophilic, birnolecu-lar. (Birnolecular means that two molecules, nucleophile and alkyl halide, take part in the step whose kinetics are measured.)... [Pg.363]

The reaction of an alkyl halide or los3 late with a nucleophiJe/base results eithe in substitution or in diminution. Nucleophilic substitutions are of two types S 2 reactions and SN1 reactions, in the SN2 reaction, the entering nucleophih approaches the halide from a direction 180° away from the leaving group, result ing in an umbrella-like inversion of configuration at the carbon atom. The reaction is kinetically second-order and is strongly inhibited by increasing stork bulk of the reactants. Thus, S 2 reactions are favored for primary and secondary substrates. [Pg.397]

Ejfect ofSolvent. In addition to the solvent effects on certain SeI reactions, mentioned earlier (p. 764), solvents can influence the mechanism that is preferred. As with nucleophilic substitution (p. 448), an increase in solvent polarity increases the possibility of an ionizing mechanism, in this case SeI, in comparison with the second-order mechanisms, which do not involve ions. As previously mentioned (p. 763), the solvent can also exert an influence between the Se2 (front or back) and SeI mechanisms in that the rates of Se2 mechanisms should be increased by an increase in solvent polarity, while Sni mechanisms are much less affected. [Pg.769]

Now we get to the meaning of 2 in Sn2. Remember from the last chapter that nucleophilicity is a measure of kinetics (how fast something happens). Since this is a nucleophilic substitution reaction, then we care about how fast the reaction is happening. In other words, what is the rate of the reaction This mechanism has only one step, and in that step, two things need to find each other the nucleophile and the electrophile. So it makes sense that the rate of the reaction will be dependent on how much electrophile is around and how much nucleophile is around. In other words, the rate of the reaction is dependent on the concentrations of two entities. The reaction is said to be second order, and we signify this by placing a 2 in the name of the reaction. [Pg.210]

In the case of the hexacarbonyls, the rate-expression contains not only the same type of first-order term but in addition one second-order overall. For good entering groups (but not CO, for example) the rate expression contains a term strictly first-order in both the complex and the entering nucleophile. The first-order rates of CO exchange are practically identical with the rates of substitution in hydrocarbon solvents, but there is nevertheless some acceleration in ether (THF, dioxan) solutions. This solvent-dependence is not so well-marked ° as in the case of nickel tetracarbonyl. The second-order rate of substitution very strongly depends upon the basicity of the entering nucleophile... [Pg.30]

Interestingly, Hoveyda and coworkers observed a second-order dependence of the reaction rate on the concentration of zirconium in these reactions, suggesting that the zirconacyclopentane is formed from a bimetallic alkene-zirconate complex such as A in Fig. 1 [21]. This finding suggests that olefin alkylations and substitutions occur via reaction of a nucleophilic alkene unit [23]. [Pg.225]

The kg value was determined to be about 6.9 x 10" s independent of the nature of L in 50°C decalin (AH - 31.8 kcal mol-1 AS - +20.2 cal mol 1 K l). Competition ratios k.g/ky equal to 3 and 5 were determined for L - P(OPh3)3 and PPI13, respectively under the same conditions. The second order pathway was proposed to occur via nucleophilic attack of L on the cluster, and an intermediate with a formulation the same as II/ was suggested, without supporting evidence of its existence, as a possible initial product of this nucleophilic attack. However, since fragmentation was only a minor side reaction of the substitution reactions with L - PPI13, it is quite unlikely that the photofragmentation and second order thermal substitution reactions occur via a common intermediate. [Pg.136]

After 20 years pharmacological interest in nitrofurans is as strong as ever, and still prompts studies including nucleophilic substitutions. Kinetic studies of the replacement of halogen by dimethylamine in 5-halo-2-nitrofurans yield second order rate constants and disclose spectroscopic (IR, UV, and... [Pg.200]

Cyanide is not the only nucleophile to effect reactions as in Scheme 35, C, but of those studied so far only benzenesulfinate and phenoxide are similar (and also show second order kinetics) while others give simple substitution with no rearrangement (and show first order kinetics). No doubt ionization to a furylium ion plays an important part in some of these transformations, but it is harder to account for the behavior of 70 which yields a lactone (71) and almost no cyano products.198... [Pg.204]

Fig. 5 Logarithmic plots of rate-equilibrium data for the formation and reaction of ring-substituted 1-phenylethyl carbocations X-[6+] in 50/50 (v/v) trifluoroethanol/water at 25°C (data from Table 2). Correlation of first-order rate constants hoh for the addition of water to X-[6+] (Y) and second-order rate constants ( h)so1v for the microscopic reverse specific-acid-catalyzed cleavage of X-[6]-OH to form X-[6+] ( ) with the equilibrium constants KR for nucleophilic addition of water to X-[6+]. Correlation of first-order rate constants kp for deprotonation of X-[6+] ( ) and second-order rate constants ( hW for the microscopic reverse protonation of X-[7] by hydronium ion ( ) with the equilibrium constants Xaik for deprotonation of X-[6+]. The points at which equal rate constants are observed for reaction in the forward and reverse directions (log ATeq = 0) are indicated by arrows. Fig. 5 Logarithmic plots of rate-equilibrium data for the formation and reaction of ring-substituted 1-phenylethyl carbocations X-[6+] in 50/50 (v/v) trifluoroethanol/water at 25°C (data from Table 2). Correlation of first-order rate constants hoh for the addition of water to X-[6+] (Y) and second-order rate constants ( h)so1v for the microscopic reverse specific-acid-catalyzed cleavage of X-[6]-OH to form X-[6+] ( ) with the equilibrium constants KR for nucleophilic addition of water to X-[6+]. Correlation of first-order rate constants kp for deprotonation of X-[6+] ( ) and second-order rate constants ( hW for the microscopic reverse protonation of X-[7] by hydronium ion ( ) with the equilibrium constants Xaik for deprotonation of X-[6+]. The points at which equal rate constants are observed for reaction in the forward and reverse directions (log ATeq = 0) are indicated by arrows.
According to this mechanism, there is a first-order dependence on both the concentration of [ A B] and B, and the reaction is called an SN2 process (substitution, nucleophilic, second-order). Although many nucleophilic substitution reactions follow one of these simple rate laws, many others do not. More complex rate laws such as... [Pg.309]

Although the first term in Eq. (20.85) appears to be first-order in complex, it usually represents a second-order process in which the solvent (which is usually a nucleophile) is involved. The relationships show that if a plot is made of fcobs versus [A], the result is a straight line having a slope of fe2 and an intercept of fej. Therefore, the substitution process can be viewed as if it occurs by two pathways. This situation can be described as illustrated in Figure 20.8. [Pg.719]

For a number of reactions in functional micelles and comicelles second-order rate constants are similar in micelles and in water. Except for aromatic nucleophilic substitution they are slightly smaller in the micelles than in water, and the pattern of behavior is exactly that found for reactions of organic nucleophilic anions in non-functional micelles. Some examples of these comparisons are in Table 9. [Pg.261]

The usual kinetic law for S/v Ar reactions is the second-order kinetic law, as required for a bimolecular process. This is generally the case where anionic or neutral nucleophiles react in usual polar solvents (methanol, DMSO, formamide and so on). When nucleophilic aromatic substitutions between nitrohalogenobenzenes (mainly 2,4-dinitrohalogenobenzenes) and neutral nucleophiles (amines) are carried out in poorly polar solvents (benzene, hexane, carbon tetrachloride etc.) anomalous kinetic behaviour may be observed263. Under pseudo-monomolecular experimental conditions (in the presence of large excess of nucleophile with respect to the substrate) each run follows a first-order kinetic law, but the rate constants (kQbs in s 1 ruol 1 dm3) were not independent of the initial concentration value of the used amine. In apolar solvents the most usual kinetic feature is the increase of the kabs value on increasing the [amine]o values [amine]o indicates the initial concentration value of the amine. [Pg.465]

TABLE 6. Second-order rate constants for nucleophilic aromatic substitution reactions of 2,4-dinitrochlorobenzene and picryl chloride. Reprinted with permission from Reference 77. Copyright (1992) American Chemical Society... [Pg.1233]


See other pages where Nucleophilic substitution second-order is mentioned: [Pg.321]    [Pg.275]    [Pg.247]    [Pg.283]    [Pg.274]    [Pg.347]    [Pg.363]    [Pg.411]    [Pg.464]    [Pg.264]    [Pg.422]    [Pg.768]    [Pg.28]    [Pg.8]    [Pg.64]    [Pg.83]    [Pg.71]    [Pg.87]    [Pg.150]    [Pg.33]    [Pg.152]    [Pg.103]    [Pg.216]    [Pg.510]    [Pg.1280]    [Pg.10]   


SEARCH



Nucleophilic order

Nucleophilic substitution reactions second order kinetics

Nucleophilic substitution reactions second-order rate equation

Nucleophilicity order

Substitution order

© 2024 chempedia.info