Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophilic capture reactions

Partial but not complete loss of optical activity m S l reactions probably results from the carbocation not being completely free when it is attacked by the nucleophile Ionization of the alkyl halide gives a carbocation-hahde ion pair as depicted m Figure 8 8 The halide ion shields one side of the carbocation and the nucleophile captures the carbocation faster from the opposite side More product of inverted configuration is formed than product of retained configuration In spite of the observation that the products of S l reactions are only partially racemic the fact that these reactions are not stereospecific is more consistent with a carbocation intermediate than a concerted bimolecular mechanism... [Pg.343]

When formulating a mechanism for the reaction of alkynes with hydrogen halides we could propose a process analogous to that of electrophilic addition to alkenes m which the first step is formation of a carbocation and is rate determining The second step according to such a mechanism would be nucleophilic capture of the carbocation by a halide ion... [Pg.377]

Jencks has discussed how the gradation from the 8fjl to the 8n2 mechanism is related to the stability and lifetime of the carbocation intermediate, as illustrated in Fig. 5.6. In the 8n 1 mechanism, the carbocation intermediate has a relatively long lifetime and is equilibrated with solvent prior to capture by a nucleophile. The reaction is clearly a stepwise one, and the energy minimxun in which the caibocation mtermediate resides is significant. As the stability of the carbocation decreases, its lifetime becomes shorter. The barrier to capture by a nucleophile becomes less and eventually disappears. This is described as the imcoupled mechanism. Ionization proceeds without nucleophilic... [Pg.273]

The addition reactions discussed in Sections 4.1.1 and 4.1.2 are initiated by the interaction of a proton with the alkene. Electron density is drawn toward the proton and this causes nucleophilic attack on the double bond. The role of the electrophile can also be played by metal cations, and the mercuric ion is the electrophile in several synthetically valuable procedures.13 The most commonly used reagent is mercuric acetate, but the trifluoroacetate, trifluoromethanesulfonate, or nitrate salts are more reactive and preferable in some applications. A general mechanism depicts a mercurinium ion as an intermediate.14 Such species can be detected by physical measurements when alkenes react with mercuric ions in nonnucleophilic solvents.15 The cation may be predominantly bridged or open, depending on the structure of the particular alkene. The addition is completed by attack of a nucleophile at the more-substituted carbon. The nucleophilic capture is usually the rate- and product-controlling step.13,16... [Pg.294]

A deuterium-labeling study of a reaction of this type demonstrated syn stereoselectivity in both the oxypalladation and P-elimination, which indicates that the cyclization occurs by internal migration, rather than by an anti nucleophilic capture.113 This particular system also gives products from double-bond migration that occurs by reversible Pd(II)-D addition-elimination. [Pg.712]

Polyene Cyclization. Perhaps the most synthetically useful of the carbo-cation alkylation reactions is the cyclization of polyenes having two or more double bonds positioned in such a way that successive bond-forming steps can occur. This process, called polyene cyclization, has proven to be an effective way of making polycyclic compounds containing six-membered and, in some cases, five-membered rings. The reaction proceeds through an electrophilic attack and requires that the double bonds that participate in the cyclization be properly positioned. For example, compound 1 is converted quantitatively to 2 on treatment with formic acid. The reaction is initiated by protonation and ionization of the allylic alcohol and is terminated by nucleophilic capture of the cyclized secondary carbocation. [Pg.864]

Carbonyl-ene reactions can be carried out in combination with other kinds of reactions. Mixed acetate acetals of y,8-enols, which can be prepared from the corresponding acetate esters, undergo cyclization with nucleophilic capture. When SnBr4 is used for cyclization, the 4-substituent is bromine, whereas BF3 in acetic acid gives... [Pg.876]

Concerning their structure and reactions, organic radical cations have been the focus of much interest. Among bimolecular reactions, the addition to alkenes and their nucleophilic capture by alcohols, which lead to C—C and C—O bond formation, respectively have been investigated in detail. Unimolecular reactions like geometric isomerization and several other rearrangements have also attracted attention. [Pg.201]

However, electron transfer-induced photoreactions in the presence of nucleophiles have attracted by far the greatest attention a rich variety of cyclopropane systems have been subjected to these reaction conditions. We will consider several factors that may affect the structure of the radical cations as well as the stereo- and regiochemistry of their nucleophilic capture. Factors to be considCTcd include (1) the spin and charge density distribution in the cyclopropane radical cation (the educt) (2) the spin density distribution in the free-radical product (3) the extent of... [Pg.295]

With ions or dipolar substrates, radical ions undergo nucleophilic or electrophilic capture. Nucleophilic capture is a general reaction for many alkene and strained-ring radical cations and may completely suppress (unimolecular) rearrangements or dimer formation. The regio- and stereochemistry of these additions are of major interest. The experimental evidence supports several guiding principles. [Pg.251]

Many of these reactions support a measure of thermodynamic control in nucleophilic capture Conjugated radicals or products formed with release of ring strain are favored. For example, the addition of ethanol to radical cation 110 + is regiospecific, forming the more stable (benzylic) intermediate 111 + the capture of 112 + likewise forms a benzylic radical (113 ). Radical cation 48 + generates a... [Pg.251]

The nucleophilic capture of tricyclane radical cations 115 " and 117 " supports the role of conventional steric hindrance 115 reacts at the 3° carbon ( 116 ), whereas the chiral isomer 117 + is captured by backside attack at the less hindered 3° carbon ( 118 ). " Both reactions are regio- and stereospecific and avoid attack at the neopentyl-type carbon (denoted by an asterisk). [Pg.252]

The ET photochemistry of (IR, 35)-(+)-c/i-chrysanthemol (c/i-127) proceeds via nucleophilic attack of the internal alcohol function on the vinyl group with simultaneous or rapid replacement of an isopropyl radical as an intramolecular leaving group, forming 128. This reaction is a mechanistic equivalent of an Sn2 reaction the mode of attack underscores the major role of strain relief in governing nucleophilic capture in radical cations. [Pg.255]

RBSctions of Radical Anions With Radicals. The coupling of arene or alkene radical anions with radicals is an important reaction, and one that has significant synthetic potential. For example, radicals formed by nucleophilic capture of radical cations couple with the acceptor radical anion, resulting in (net) aromatic substitution. Thus, the l-methoxy-3-phenylpropyl radical (113 R = H) couples with dicyanobenzene radical anion loss of cyanide ion then generates the substitution product 132.2 + ... [Pg.256]

In addition to nucleophilic capture of alkene or cyclopropane radical cations (see above) radicals may be generated by cleavage of C—X bonds, particularly C—Si bonds. Such cleavage is often assisted by a nucleophile. Because the radical is generated near the radical anion, to which it couples, the resulting C—C bond formation may be considered a reaction of a modified radical (ion) pair. [Pg.257]

No reactions of t with protic solvents have been reported however, its cyclic analogue 1,2-diphenylcyclobutene (7) reacts with the protic solvents methanol, acetic acid, and water, to yield adducts 85 and 86 (eq. 28). The proposed mechanism for the formation of 85 and 86 involves the formation of singlet exciplex followed by proton transfer to yield a cyclobutyl cation 87. Stereoselective nucleophilic capture of 87 by solvent from its less hindered side yields 85, while skeletal rearrangement of 87 yields the cyclopropylmethyl cation 88, which reacts with solvent to yield 86 ... [Pg.218]

The oxidative method is often conducted on enol (or enolate) derivatives and a simplified mechanism is shown in Scheme 71. Initial chemical or electrochemical oxidation gives an electrophilic radical (68 that may be free or metal-complexed) that is relatively resistant to further oxidation. Addition to an alkene now gives an adduct radical (69) that is more susceptible to oxidation. Products are often derived from the resulting intermediate cation (70) by inter- or intra-molecular nucleophilic capture or by loss of a proton to form an alkene. The concentration and oxidizing potential of the reagent help to determine the selectivity in such reactions. [Pg.762]


See other pages where Nucleophilic capture reactions is mentioned: [Pg.297]    [Pg.297]    [Pg.366]    [Pg.382]    [Pg.120]    [Pg.33]    [Pg.243]    [Pg.130]    [Pg.28]    [Pg.590]    [Pg.204]    [Pg.242]    [Pg.265]    [Pg.290]    [Pg.291]    [Pg.291]    [Pg.296]    [Pg.297]    [Pg.298]    [Pg.140]    [Pg.599]    [Pg.155]    [Pg.245]    [Pg.252]    [Pg.60]    [Pg.749]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Intramolecular reactions nucleophilic capture

© 2024 chempedia.info