Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleophiles of organometallics

Hard carbon nucleophiles of organometallic compounds react with 7r-allyl-palladium complexes. A steroidal side-chain is introduced regio- and stereo-selectively by the reaction of the steroidal 7T-allylpalladium complex 319 with the alkenylzirconium compound 320[283]. [Pg.64]

In addition, a catalytic version of Tt-allylpalladium chemistry has been devel-oped[6,7]. Formation of the Tr-allylpalladium complexes by the oxidative addition of various allylic compounds to Pd(0) and subsequent reaction of the complex with soft carbon nucleophiles are the basis of catalytic allylation. After the reaction, Pd(0) is reformed, and undergoes oxidative addition to the allylic compounds again, making the reaction catalytic.-In addition to the soft carbon nucleophiles, hard carbon nucleophiles of organometallic compounds of main group metals are allylated with 7r-allylpalladium complexes. The reaction proceeds via transmetallation. These catalytic reactions are treated in this chapter. [Pg.290]

The stereochemistry of the Pd-catalyzed allylation of nucleophiles has been studied extensively[5,l8-20]. In the first step, 7r-allylpalladium complex formation by the attack of Pd(0) on an allylic part proceeds by inversion (anti attack). Then subsequent reaction of soft carbon nucleophiles, N- and 0-nucleophiles proceeds by inversion to give 1. Thus overall retention is observed. On the other hand, the reaction of hard carbon nucleophiles of organometallic compounds proceeds via transmetallation, which affords 2 by retention, and reductive elimination affords the final product 3. Thus the overall inversion is observed in this case[21,22]. [Pg.292]

The enamine 193 as a carbon nucleophile reacts with TT-allylpalladium chloride to give 2-allylcyclohexanone after hydrolysis [84]. Hard carbon nucleophiles of organometallic compounds also react with TT-allylpalladium complexes. A steroidal side chain was introduced to 194 to afford 197 regio- and stereoselectively by the... [Pg.54]

The properties of organometallic compounds are much different from those of the other classes we have studied to this point Most important many organometallic com pounds are powerful sources of nucleophilic carbon something that makes them espe cially valuable to the synthetic organic chemist For example the preparation of alkynes by the reaction of sodium acetylide with alkyl halides (Section 9 6) depends on the presence of a negatively charged nucleophilic carbon m acetylide ion... [Pg.587]

The addition of carbon nucleophile, including organometallic compounds, enolates, or enols, and ylides to carbonyl gro is an important method of formation of carbon-carbon bonds. Such reactions are- ctremely important in synthesis and will be discussed extensively in Part B. Here, we will examine some of the fundamental mechanistic aspects of addition of carbon nucleophiles to carbonyl groups. [Pg.462]

The stereoselectivity of organometallic additions with carbonyl compounds fits into the general pattern for nucleophilic attack discussed in Chapter 3. With 4-r-butylcyclohex-anone, there is a preference for equatorial approach but the selectivity is low. Enhanced steric factors promote stereoselective addition. [Pg.466]

Another such effect is the intervention of cyclic transition states in reactions of organometallic compounds (Section II, B, 5) with azines or in intramolecular nucleophilic substitutions (Section II, F). [Pg.269]

Organometallic chemistry of pyrrole is characterized by a delicate balance of the ti N)- and -coordination modes. Azacymantrene is an illustration of the considerable nucleophilicity of the heteroatom. However, azaferrocene can be alkylated at C2 and C3 sites. Ruthenium and osmium, rhodium, and iridium chemistry revealed the bridging function of pyrroles, including zwitterionic and pyrrolyne complex formation. The ti (CC) coordination of osmium(2- -) allows versatile derivatizations of the heteroring. [Pg.178]

Many other kinds of organometallic compounds can be prepared in a manner similar to that of Grignard reagents. For instance, alkyllithium reagents, RLi, can be prepared by the reaction of an alkyl halide with lithium metal. Alkyllithiums are both nucleophiles and strong bases, and their chemistry is similar in many respects to that of alkylmagnesium halides. [Pg.346]

A different approach to chiral oc-hydroxy acids 4 is the nucleophilic addition of organometallic reagents to chiral oc-oxo 4,5-dihydrooxazoles 2, which can be synthesized by oxidation of the corresponding 2-alkyl-4,5-dihydrooxazoles l17,19. [Pg.103]

As with oxathianes 3 (R1 = CH, R2 = H), which bear a close structural resemblance to 17, the addition of organometallic reagents is highly diastereoselective with a predominant chelation-controlled attack of the nucleophile from the Rc-sidc35 -40. In the case of vinylmagnesium bromide a considerable enhancement of the diastereo selectivity could be attained by adding... [Pg.111]

The general mechanism of coupling reactions of aryl-alkenyl halides with organometallic reagents and nucleophiles is shown in Fig. 9.4. It contains (a) oxidative addition of aryl-alkenyl halides to zero-valent transition metal catalysts such as Pd(0), (b) transmetallation of organometallic reagents to transition metal complexes, and (c) reductive elimination of coupled product with the regeneration of the zero-valent transition metal catalyst. [Pg.483]

The thiophene ring can be elaborated using standard electrophilic, nucleophilic, and organometallic chemistry. A variety of methods have been developed to exploit the tendency for the thiophene ring (analogous to that of furan and pyrrole) to favor electrophilic substitution and metallation at its a-carbons. Substitution at the p-carbons is more challenging, but this problem can also be solved by utilizing relative reactivity differences. [Pg.79]

The reaction of isocyanide complexes with nucleophiles gives metal-carbene complexes [49], which constitute an important branch of organometallic chemistry and are effective catalyst systems for a variety of processes [50, 51]. [Pg.384]


See other pages where Nucleophiles of organometallics is mentioned: [Pg.116]    [Pg.118]    [Pg.49]    [Pg.116]    [Pg.118]    [Pg.49]    [Pg.5]    [Pg.90]    [Pg.177]    [Pg.177]    [Pg.416]    [Pg.296]    [Pg.296]    [Pg.51]    [Pg.41]    [Pg.99]    [Pg.105]    [Pg.109]    [Pg.690]    [Pg.724]    [Pg.903]    [Pg.49]    [Pg.56]    [Pg.60]    [Pg.645]    [Pg.779]    [Pg.839]    [Pg.90]    [Pg.56]    [Pg.60]    [Pg.645]    [Pg.779]    [Pg.839]   


SEARCH



Addition of Organometallic Nucleophiles

Lewis Acidic Functions of Alkali Metal in Organometallic Reagents as Nucleophile

Nucleophile organometallics

Nucleophilic addition of organometallic

Organometallic nucleophile

Organometallic nucleophiles

Organometallics nucleophilic

Preparation and Properties of Organometallic Nucleophiles

© 2024 chempedia.info