Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nucleation kinetics model

Qualitative examples abound. Perfect crystals of sodium carbonate, sulfate, or phosphate may be kept for years without efflorescing, although if scratched, they begin to do so immediately. Too strongly heated or burned lime or plaster of Paris takes up the first traces of water only with difficulty. Reactions of this type tend to be autocat-alytic. The initial rate is slow, due to the absence of the necessary linear interface, but the rate accelerates as more and more product is formed. See Refs. 147-153 for other examples. Ruckenstein [154] has discussed a kinetic model based on nucleation theory. There is certainly evidence that patches of product may be present, as in the oxidation of Mo(lOO) surfaces [155], and that surface defects are important [156]. There may be catalysis thus reaction VII-27 is catalyzed by water vapor [157]. A topotactic reaction is one where the product or products retain the external crystalline shape of the reactant crystal [158]. More often, however, there is a complicated morphology with pitting, cracking, and pore formation, as with calcium carbonate [159]. [Pg.282]

Correlations of nucleation rates with crystallizer variables have been developed for a variety of systems. Although the correlations are empirical, a mechanistic hypothesis regarding nucleation can be helpful in selecting operating variables for inclusion in the model. Two examples are (/) the effect of slurry circulation rate on nucleation has been used to develop a correlation for nucleation rate based on the tip speed of the impeller (16) and (2) the scaleup of nucleation kinetics for sodium chloride crystalliza tion provided an analysis of the role of mixing and mixer characteristics in contact nucleation (17). Pubhshed kinetic correlations have been reviewed through about 1979 (18). In a later section on population balances, simple power-law expressions are used to correlate nucleation rate data and describe the effect of nucleation on crystal size distribution. [Pg.343]

Various kinetic models on particle formation were proposed by different researchers. These may be classified as follows (1) radical absorption mechanisms by Gardon [28-34] and Fisch and Tsai [13], (2) micellar nucleation newer models by Nomura et al. [35,36] and by Hansen and Ugelstad [37], (3) homogeneous nucleation by Fistch and coworkers [13,38,39]. [Pg.193]

Solutions were obtained, either analytically or numerically, on a computer. The quenched-reaction, kinetic model considered that the nucleation sequence of reactions evolves to some time (the quenching time) and then promptly halts. Both kinetic models yield a result having the same general form as the statistical model, namely,... [Pg.82]

The rigorous kinetic modeling with the incorporation of the diffusion step allows explaining the deactivation of the carbon filament growth and the influence of the affinity for carbon formation on the nucleation of the filamentous carbon. [Pg.82]

Dobberstein, H. 2002. A thermodynamic and kinetic model for nucleation and growth in solution derived thin films. PhD dissertation. Clemson University, Clemson, SC. [Pg.69]

We might take a purist s approach and attempt to use kinetic theory to describe the dissolution and precipitation of each mineral that might appear in the calculation. Such an approach, although appealing and conceptually correct, is seldom practical. The database required to support the calculation would have to include rate laws for every possible reaction mechanism for each of perhaps hundreds of minerals. Even unstable minerals that can be neglected in equilibrium models would have to be included in the database, since they might well form in a kinetic model (see Section 26.4, Ostwald s Step Rule). If we are to allow new minerals to form, furthermore, it will be necessary to describe how quickly each mineral can nucleate on each possible substrate. [Pg.243]

Fig. 3. Classification of human prion diseases. Sporadic the transformation from PrPc (circle) to PrPSc (square) occurs without apparent cause. Familial a point mutation ( ) is thought to facilitate the transformation. Infectious the transformation arises via PrPSc which acts as a template. The kinetic equations are defined by Eigen (1996). The infectious form includes kuru, iatrogenic CJD (iCJD), variant CJD (vCJD first reported in 1996), bovine spongiform encephalopathy (BSE first reported in 1985), and scrapie. In the nucleation-dependent model, monomeric PrPc and PrPSc are in chemical equilibrium. Fig. 3. Classification of human prion diseases. Sporadic the transformation from PrPc (circle) to PrPSc (square) occurs without apparent cause. Familial a point mutation ( ) is thought to facilitate the transformation. Infectious the transformation arises via PrPSc which acts as a template. The kinetic equations are defined by Eigen (1996). The infectious form includes kuru, iatrogenic CJD (iCJD), variant CJD (vCJD first reported in 1996), bovine spongiform encephalopathy (BSE first reported in 1985), and scrapie. In the nucleation-dependent model, monomeric PrPc and PrPSc are in chemical equilibrium.
Experimental determination of Ay for a reaction requires the rate constant k to be determined at different pressures, k is obtained as a fit parameter by the reproduction of the experimental kinetic data with a suitable model. The data are the concentration of the reactants or of the products, or any other coordinate representing their concentration, as a function of time. The choice of a kinetic model for a solid-state chemical reaction is not trivial because many steps, having comparable rates, may be involved in making the kinetic law the superposition of the kinetics of all the different, and often unknown, processes. The evolution of the reaction should be analyzed considering all the fundamental aspects of condensed phase reactions and, in particular, beside the strictly chemical transformations, also the diffusion (transport of matter to and from the reaction center) and the nucleation processes. [Pg.153]

A kinetic model for single-phase polymerizations— that is, reactions where because of the similarity of structure the polymer grows as a solid-state solution in the monomer crystal without phase separation—has been proposed by Baughman [294] to explain the experimental behavior observed in the temperature- or light-induced polymerization of substimted diacetylenes R—C=C—C=C—R. The basic feature of the model is that the rate constant for nucleation is assumed to depend on the fraction of converted monomer x(f) and is not constant like it is assumed in the Avrami model discussed above. The rate of the solid-state polymerization is given by... [Pg.157]

The development and refinement of population balance techniques for the description of the behavior of laboratory and industrial crystallizers led to the belief that with accurate values for the crystal growth and nucleation kinetics, a simple MSMPR type crystallizer could be accurately modelled in terms of its CSD. Unfortunately, accurate measurement of the CSD with laser light scattering particle size analyzers (especially of the small particles) has revealed that this is not true. In mar cases the CSD data obtained from steady state operation of a MSMPR crystallizer is not a straight line as expected but curves upward (1. 32. 33V This indicates more small particles than predicted... [Pg.4]

Tavare and Garside ( ) developed a method to employ the time evolution of the CSD in a seeded isothermal batch crystallizer to estimate both growth and nucleation kinetics. In this method, a distinction is made between the seed (S) crystals and those which have nucleated (N crystals). The moment transformation of the population balance model is used to represent the N crystals. A supersaturation balance is written in terms of both the N and S crystals. Experimental size distribution data is used along with a parameter estimation technique to obtain the kinetic constants. The parameter estimation involves a Laplace transform of the experimentally determined size distribution data followed a linear least square analysis. Depending on the form of the nucleation equation employed four, six or eight parameters will be estimated. A nonlinear method of parameter estimation employing desupersaturation curve data has been developed by Witkowki et al (S5). [Pg.10]

This section will begin by looking at how thermodynamic and kinetic modelling has been combined to understand time-temperature-transformation diagrams in steels. The woric, for the most part, is semi-empirical in nature, which is forced upon the topic area by difficulties associated with the diffusional transformations, particularly where nucleation aspects have to be considered. The approaches have considered how best to predict the time/temperature conditions for austenite to... [Pg.440]

Moreover, the interpretation of experimental data on clusters in solution requires more elaborate theoretical models to include the solvation effects around the structure of a small metal cluster. New kinetic models must be developed to describe nucleation, which governs the phase transition from a solute to a small solid phase. [Pg.613]

We begin by describing the current understanding of the kinetics of polymerization of classical unsaturated monomers and macromonomers in the disperse systems. In particular, we note the importance of diffusion-controlled reactions of such monomers at high conversions, the nucleation mechanism of particle formation, and the kinetics and kinetic models for radical polymerization in disperse systems. [Pg.7]

Phase transformations in heterogeneous catalysis have been described recently by topochemical kinetic models [111-115]. These models were taken from solid chemistry, where they had been developed for "gas-solid reactions. The products of such reactions are solids. When gas is in contact with the initial solid, the reaction rate is negligible. But as nucleates of the phase... [Pg.71]

The topochemical model, however, describes the origination and growth of macrostructures. In principle one could construct kinetic models accounting for the kinetics of cluster (or nucleate) formation as a model for the system or reverse consecutive reactions [114, 121]. [Pg.75]

While vinyl acetate is normally polymerized in batch or continuous stirred tank reactors, continuous reactors offer the possibility of better heat transfer and more uniform quality. Tubular reactors have been used to produce polystyrene by a mass process (1, 2), and to produce emulsion polymers from styrene and styrene-butadiene (3 -6). The use of mixed emulsifiers to produce mono-disperse latexes has been applied to polyvinyl toluene (5). Dunn and Taylor have proposed that nucleation in seeded vinyl acetate emulsion is prevented by entrapment of oligomeric radicals by the seed particles (6j. Because of the solubility of vinyl acetate in water, Smith -Ewart kinetics (case 2) does not seem to apply, but the kinetic models developed by Ugelstad (7J and Friis (8 ) seem to be more appropriate. [Pg.561]

The classical nucleation theory embodied in Eq. (16) has a number of assumptions and physical properties that cannot be estimated accurately. Accordingly, empirical power-law relationships involving the concept of a metastable limit have been used to model primary nucleation kinetics ... [Pg.201]

The different combinations of nucleation, growth, and impingement processes give rise to the Johnson-Mehl-Avrami kinetic model [4], which results in the following equation... [Pg.105]

The processes of solidification and crystallisation are complex, as shown above. Some approaches to a kinetic model have been made, and it has been shown that changes occur over a wide range of time scales. Rousset et al. (Rousset, Rappaz and Minner 1998) studied the kinetics of POS-SOS crystallisation in terms of nucleation and growth kinetics, and showed transformations on time-scales of both seconds and hours. Van Malssen et al. (Van Malssen, Van Langevelde, Peschar and Scherrk 1999) used x-ray powder diffraction to identify kinetic effects at all timescales between seconds and weeks the solidification takes much longer than the few minutes in the factory process. [Pg.538]

Kinetic Models Where Nucleation and Growth Are Combined... [Pg.161]


See other pages where Nucleation kinetics model is mentioned: [Pg.149]    [Pg.183]    [Pg.205]    [Pg.208]    [Pg.210]    [Pg.82]    [Pg.187]    [Pg.843]    [Pg.261]    [Pg.178]    [Pg.115]    [Pg.230]    [Pg.9]    [Pg.151]    [Pg.438]    [Pg.471]    [Pg.467]    [Pg.162]    [Pg.267]    [Pg.109]    [Pg.17]    [Pg.202]    [Pg.57]    [Pg.402]    [Pg.415]    [Pg.421]    [Pg.54]   
See also in sourсe #XX -- [ Pg.156 ]




SEARCH



Kinetic Models Where Nucleation and Growth Are Combined

Kinetic nucleation

Model Nucleated

Nucleation first-order kinetic model

Nucleation modeling

© 2024 chempedia.info