Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonadiabatic transitions—A brief overview

Another basic theory of nonadiabatic transitions is the semiclassical Ehrenfest theory (SET). Although it can cope with multidimensional nonadiabatic electronic-state mixing, it inevitably produces a nuclear path that runs on an averaged potential energy surface after having passed across the nonadiabatic region, which is totally unphysical. Unfortunately, since SET seems intuitively correct, a naive and conventional derivation of this theory obscures how this critical difficulty arises. [Pg.2]

Surface Hopping Model (SHM) first proposed by Tully and Preston [444] is a practical method to cope with nonadiabatic transition. It is actually not a theory but an intuitive prescription to take account of quantum coherent jump by replacing with a classical hop from one potential energy surface to another with a transition probability that is borrowed from other theories of semiclassical (or full quantum mechanical) nonadiabatic transitions state theory such as Zhu-Nakamura method. The fewest switch surface hopping method [445] and the theory of natural decay of mixing [197, 452, 509, 515] are among the most advanced methodologies so far proposed to practically resolve the critical difficulty of SET and the primitive version of SHM. [Pg.2]


See other pages where Nonadiabatic transitions—A brief overview is mentioned: [Pg.2]   


SEARCH



Brief

Briefing

Transition overview

Transits overview

© 2024 chempedia.info