Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonadiabatic chemical dynamics theory

The author would like to thank all the group members in the past and present who carried out all the researches discussed in this chapter Drs. C. Zhu, G. V. Mil nikov, Y. Teranishi, K. Nagaya, A. Kondorskiy, H. Fujisaki, S. Zou, H. Tamura, and P. Oloyede. He is indebted to Professors S. Nanbu and T. Ishida for their contributions, especially on molecular functions and electronic structure calculations. He also thanks Professor Y. Zhao for his work on the nonadiabatic transition state theory and electron transfer. The work was supported by a Grant-in-Aid for Specially Promoted Research on Studies of Nonadiabatic Chemical Dynamics based on the Zhu-Nakamura Theory from MEXT of Japan. [Pg.207]

As illustrated above, nonadiabatic dynamics exhibits vividly how electrons move in and between molecules. Complex natural orbitals, in particular SONO in the present case, clearly illustrate how the electronic wavefunction evolves in time. In addition to the time scale, the driving mechanism for the electron migration has also been illustrated. By clarifying such complex electron behavior, not available using stationary-state quantum chemistry, our understanding of realistic chemical reactions is greatly enhanced. As a result, it has clearly been shown that nonadiabatic electron wavepacket theory is invaluable in the analysis of non-rigid and mobile electronic states of molecular systems. [Pg.291]

In Chapter 5, we have studied some of the effects of laser fields on chemical dynamics. In particular, we have investigated how time-resolved photoelectron spectroscopy can be used as a very good means to monitor the femtosecond-scale nuclear dynamics such as the passage across nonadia-batic regions. The modulation of nonadiabatic interactions (both avoided crossing and conical intersection) is also among the main subjects from the view point of control of chemical reaction. Chapter 7, on the other hand, has treated nonadiabatic electron wavepacket dynamics relevant to chemical reactions. Here in this chapter, we therefore rise to the theory of electron dynamics in laser fields mainly associated with chemical dynamics. [Pg.343]

Thus this book describes the recent theories of chemical dynamics beyond the Born-Oppenheimer framework from a fundamental perspective of quantum wavepacket dynamics. To formulate these issues on a clear theoretical basis and to develop the novel theories beyond the Born-Oppenheimer approximation, however, we should first learn a basic classical and quantum nuclear dynamics on an adiabatic (the Born-Oppenheimer) potential energy surface. So we learn much from the classic theories of nonadiabatic transition such as the Landau-Zener theory and its variants. [Pg.442]

Quantum mechanical effects—tunneling and interference, resonances, and electronic nonadiabaticity— play important roles in many chemical reactions. Rigorous quantum dynamics studies, that is, numerically accurate solutions of either the time-independent or time-dependent Schrodinger equations, provide the most correct and detailed description of a chemical reaction. While hmited to relatively small numbers of atoms by the standards of ordinary chemistry, numerically accurate quantum dynamics provides not only detailed insight into the nature of specific reactions, but benchmark results on which to base more approximate approaches, such as transition state theory and quasiclassical trajectories, which can be applied to larger systems. [Pg.2]

Lengsfield BH, Yarkony DR (1992) Nonadiabatic interactions between potential energy surfaces theory and applications. In Baer M, Ng CY (eds) State-selected and state-to-state ion-molecule reaction dynamics part 2 theory, Vol. 82 of Advances in Chemical Physics, John Wiley and Sons, New York, p 1-71. [Pg.328]

Since chemical reactions usually show significant nonadiabaticity, there are naturally quantitative errors in the predictions of the vibrationally adiabatic model. Furthermore, there are ambiguities about how to apply the theory such as the optimal choice of coordinate system. Nevertheless, this simple picture seems to capture the essence of the resonance trapping mechanism for many systems. We also point out that the recent work of Truhlar and co-workers24,34 has demonstrated that the reaction dynamics is largely controlled by the quantized bottleneck states at the barrier maxima in a much more quantitative manner than expected. [Pg.49]

Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)... Fig. 3. Vibrational population distributions of N2 formed in associative desorption of N-atoms from ruthenium, (a) Predictions of a classical trajectory based theory adhering to the Born-Oppenheimer approximation, (b) Predictions of a molecular dynamics with electron friction theory taking into account interactions of the reacting molecule with the electron bath, (c) Born—Oppenheimer potential energy surface, (d) Experimentally-observed distribution. The qualitative failure of the electronically adiabatic approach provides some of the best available evidence that chemical reactions at metal surfaces are subject to strong electronically nonadiabatic influences. (See Refs. 44 and 45.)...
Baer, M. (1985b). The theory of electronic nonadiabatic transitions in chemical reactions, in Theory of Chemical Reaction Dynamics, Vol. II, ed. M. Baer (CRC Press, Boca Raton). [Pg.381]


See other pages where Nonadiabatic chemical dynamics theory is mentioned: [Pg.179]    [Pg.96]    [Pg.98]    [Pg.195]    [Pg.535]    [Pg.340]    [Pg.128]    [Pg.3]    [Pg.167]    [Pg.275]    [Pg.340]    [Pg.344]    [Pg.349]    [Pg.442]    [Pg.443]    [Pg.6]    [Pg.201]    [Pg.184]    [Pg.224]    [Pg.106]    [Pg.106]    [Pg.195]    [Pg.248]    [Pg.465]    [Pg.128]    [Pg.172]    [Pg.550]    [Pg.181]    [Pg.183]    [Pg.93]   
See also in sourсe #XX -- [ Pg.172 , Pg.173 , Pg.174 , Pg.175 , Pg.176 ]




SEARCH



Chemical dynamics

Dynamical theory

Dynamics, theory

Nonadiabatic dynamics

Theory nonadiabatic

© 2024 chempedia.info