Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non-ensemble

This simple practicable cooling algorithm (PACl) is easily generalized to cool one spin to any purification level L. [2] The resultant bias will be very close to (3/2), as long as this bias is much smaller than 1. For a final bias that approaches 1 (close to a pure state), as required for conventional (non-ensemble) quantum computing, a more precise calculation is required. [Pg.10]

Consider, at t = 0, some non-equilibrium ensemble density P g(P. q°) on the constant energy hypersurface S, such that it is nonnalized to one. By Liouville s theorem, at a later time t the ensemble density becomes ((t) t(p. q)), where q) is die function that takes die current phase coordinates (p, q) to their initial values time (0 ago the fimctioii ( ) is uniquely detemiined by the equations of motion. The expectation value of any dynamical variable ilat time t is therefore... [Pg.388]

A direct and transparent derivation of the second virial coefficient follows from the canonical ensemble. To make the notation and argument simpler, we first assume pairwise additivity of the total potential with no angular contribution. The extension to angularly-mdependent non-pairwise additive potentials is straightforward. The total potential... [Pg.449]

There are 2 temis in the sum since each site has two configurations with spin eitlier up or down. Since the number of sites N is fmite, the PF is analytic and the critical exponents are classical, unless the themiodynamic limit N oo) is considered. This allows for the possibility of non-classical exponents and ensures that the results for different ensembles are equivalent. The characteristic themiodynamic equation for the variables N, H and T is... [Pg.519]

When a system is not in equilibrium, the mathematical description of fluctuations about some time-dependent ensemble average can become much more complicated than in the equilibrium case. However, starting with the pioneering work of Einstein on Brownian motion in 1905, considerable progress has been made in understanding time-dependent fluctuation phenomena in fluids. Modem treatments of this topic may be found in the texts by Keizer [21] and by van Kampen [22]. Nevertheless, the non-equilibrium theory is not yet at the same level of rigour or development as the equilibrium theory. Here we will discuss the theory of Brownian motion since it illustrates a number of important issues that appear in more general theories. [Pg.687]

There are tliree steps in the calculation first, solve the frill nonlinear set of hydrodynamic equations in the steady state, where the time derivatives of all quantities are zero second, linearize about the steady-state solutions third, postulate a non-equilibrium ensemble through a generalized fluctuation dissipation relation. [Pg.728]

In the above discussion it was assumed that the barriers are low for transitions between the different confonnations of the fluxional molecule, as depicted in figure A3.12.5 and therefore the transitions occur on a timescale much shorter than the RRKM lifetime. This is the rapid IVR assumption of RRKM theory discussed in section A3.12.2. Accordingly, an initial microcanonical ensemble over all the confonnations decays exponentially. However, for some fluxional molecules, transitions between the different confonnations may be slower than the RRKM rate, giving rise to bottlenecks in the unimolecular dissociation [4, ]. The ensuing lifetime distribution, equation (A3.12.7), will be non-exponential, as is the case for intrinsic non-RRKM dynamics, for an mitial microcanonical ensemble of molecular states. [Pg.1024]

The first classical trajectory study of iinimoleciilar decomposition and intramolecular motion for realistic anhannonic molecular Hamiltonians was perfonned by Bunker [12,13], Both intrinsic RRKM and non-RRKM dynamics was observed in these studies. Since this pioneering work, there have been numerous additional studies [9,k7,30,M,M, ai d from which two distinct types of intramolecular motion, chaotic and quasiperiodic [14], have been identified. Both are depicted in figure A3,12,7. Chaotic vibrational motion is not regular as predicted by tire nonnal-mode model and, instead, there is energy transfer between the modes. If all the modes of the molecule participate in the chaotic motion and energy flow is sufficiently rapid, an initial microcanonical ensemble is maintained as the molecule dissociates and RRKM behaviour is observed [9], For non-random excitation initial apparent non-RRKM behaviour is observed, but at longer times a microcanonical ensemble of states is fonned and the probability of decomposition becomes that of RRKM theory. [Pg.1026]

Apparent non-RRKM behaviour occurs when the molecule is excited non-randomly and there is an initial non-RRKM decomposition before IVR fomis a microcanonical ensemble (see section A3.12.2). Reaction patliways, which have non-competitive RRKM rates, may be promoted in this way. Classical trajectory simulations were used in early studies of apparent non-RRKM dynamics [113.114]. [Pg.1035]

As discussed in section A3.12.2. intrinsic non-RRKM behaviour occurs when there is at least one bottleneck for transitions between the reactant molecule s vibrational states, so drat IVR is slow and a microcanonical ensemble over the reactant s phase space is not maintained during the unimolecular reaction. The above discussion of mode-specific decomposition illustrates that there are unimolecular reactions which are intrinsically non-RRKM. Many van der Waals molecules behave in this maimer [4,82]. For example, in an initial microcanonical ensemble for the ( 211 )2 van der Waals molecule both the C2H4—C2H4 intennolecular modes and C2H4 intramolecular modes are excited with equal probabilities. However, this microcanonical ensemble is not maintained as the dimer dissociates. States with energy in the intermolecular modes react more rapidly than do those with the C2H4 intramolecular modes excited [85]. [Pg.1037]

Finally, by considering increasing the number of particles by one in the canonical ensemble (looking at the excess, non-ideal, part), it is easy to derive the Widom [34] test-particle fomuila... [Pg.2248]

In other words, if we look at any phase-space volume element, the rate of incoming state points should equal the rate of outflow. This requires that be a fiinction of the constants of the motion, and especially Q=Q i). Equilibrium also implies d(/)/dt = 0 for any /. The extension of the above equations to nonequilibriiim ensembles requires a consideration of entropy production, the method of controlling energy dissipation (diennostatting) and the consequent non-Liouville nature of the time evolution [35]. [Pg.2249]

One way to overcome this problem is to start by setting up the ensemble of trajectories (or wavepacket) at the transition state. If these bajectories are then run back in time into the reactants region, they can be used to set up the distribution of initial conditions that reach the barrier. These can then be run forward to completion, that is, into the products, and by using transition state theory a reaction rate obtained [145]. These ideas have also been recently extended to non-adiabatic systems [146]. [Pg.272]

When g = 1 the extensivity of the entropy can be used to derive the Boltzmann entropy equation 5 = fc In W in the microcanonical ensemble. When g 1, it is the odd property that the generalization of the entropy Sq is not extensive that leads to the peculiar form of the probability distribution. The non-extensivity of Sq has led to speculation that Tsallis statistics may be applicable to gravitational systems where interaction length scales comparable to the system size violate the assumptions underlying Gibbs-Boltzmann statistics. [4]... [Pg.199]

Z-matriccs arc commonly used as input to quantum mechanical ab initio and serai-empirical) calculations as they properly describe the spatial arrangement of the atoms of a molecule. Note that there is no explicit information on the connectivity present in the Z-matrix, as there is, c.g., in a connection table, but quantum mechanics derives the bonding and non-bonding intramolecular interactions from the molecular electronic wavefunction, starting from atomic wavefiinctions and a crude 3D structure. In contrast to that, most of the molecular mechanics packages require the initial molecular geometry as 3D Cartesian coordinates plus the connection table, as they have to assign appropriate force constants and potentials to each atom and each bond in order to relax and optimi-/e the molecular structure. Furthermore, Cartesian coordinates are preferable to internal coordinates if the spatial situations of ensembles of different molecules have to be compared. Of course, both representations are interconvertible. [Pg.94]

Other methods which are applied to conformational analysis and to generating multiple conformations and which can be regarded as random or stochastic techniques, since they explore the conformational space in a non-deterministic fashion, arc genetic algorithms (GA) [137, 1381 simulation methods, such as molecular dynamics (MD) and Monte Carlo (MC) simulations 1139], as well as simulated annealing [140], All of those approaches and their application to generate ensembles of conformations arc discussed in Chapter II, Section 7.2 in the Handbook. [Pg.109]

Here Tq are coordinates in a reference volume Vq and r = potential energy of Ar crystals has been computed [288] as well as lattice constants, thermal expansion coefficients, and isotope effects in other Lennard-Jones solids. In Fig. 4 we show the kinetic and potential energy of an Ar crystal in the canonical ensemble versus temperature for different values of P we note that in the classical hmit (P = 1) the low temperature specific heat does not decrease to zero however, with increasing P values the quantum limit is approached. In Fig. 5 the isotope effect on the lattice constant (at / = 0) in a Lennard-Jones system with parameters suitable for Ne atoms is presented, and a comparison with experimental data is made. Please note that in a classical system no isotope effect can be observed, x "" and the deviations between simulations and experiments are mainly caused by non-optimized potential parameters. [Pg.95]

Suppose now that we have an ensemble of N non-interacting particles in a thermally insulated enclosure of constant volume. This statement means that the number of particles, the internal energy and the volume are constant and so we are dealing with a microcanonical ensemble. Suppose that each of the particles has quantum states with energies given by i, 2,... and that, at equilibrium there are Ni particles in quantum state Su particles in quantum state 2, and so on. [Pg.60]

Figure 1 Convergence of the total energy and of the Hellmann-Feynman forces for ensembles of paramagnetic Fe atoms with 4 to 32 atoms. Part (a) shows the results of non-selfconsistent calculations performed with a fixed potential, part (b) the results of selfconsistent calculations. Full lines represent the RMM-DIIS (iterative diagonal-ization) results, broken lines the CGa (total-energy minimization) calculations. (4. text. Figure 1 Convergence of the total energy and of the Hellmann-Feynman forces for ensembles of paramagnetic Fe atoms with 4 to 32 atoms. Part (a) shows the results of non-selfconsistent calculations performed with a fixed potential, part (b) the results of selfconsistent calculations. Full lines represent the RMM-DIIS (iterative diagonal-ization) results, broken lines the CGa (total-energy minimization) calculations. (4. text.
Quantites calculees pour des regions prometteuses comportant des structures non encore explorees par foration ou quantites evaluees sur la base de la structure g ologique d ensemble d un bassin. [Pg.42]

The model has been treated analytically employing the effective medium approach [58] and by Monte Carlo simulation. It makes the following predictions A dilute ensemble of non-interacting charge carriers, initially generated at random within the DOS, lends to relax toward the tail slates and ultimately equilibrates at... [Pg.519]

S(l) is the nucleation rate for non-interacting nuclei and is further interpreted as the probability distribution for a crystal to have thickness l. Notice that for 2xsJAF < 1, S([) is negative, which corresponds to the statement that a lamella of this thickness is unstable. The total flux, ST, in an ensemble of crystals is obtained by summing S(l) over all possible values of l ... [Pg.261]


See other pages where Non-ensemble is mentioned: [Pg.89]    [Pg.6]    [Pg.6]    [Pg.183]    [Pg.89]    [Pg.6]    [Pg.6]    [Pg.183]    [Pg.388]    [Pg.424]    [Pg.1025]    [Pg.1499]    [Pg.1610]    [Pg.3022]    [Pg.293]    [Pg.294]    [Pg.294]    [Pg.310]    [Pg.40]    [Pg.59]    [Pg.160]    [Pg.7]    [Pg.455]    [Pg.66]    [Pg.375]    [Pg.105]    [Pg.207]    [Pg.485]    [Pg.525]    [Pg.107]    [Pg.60]    [Pg.107]   
See also in sourсe #XX -- [ Pg.6 , Pg.183 ]




SEARCH



Generating non-natural ensembles

Non-interacting ensemble-Vs representable

Non-natural ensembles

© 2024 chempedia.info