Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Non-corrin cobalt

Non-corrin cobalt has a number of interesting applications in the chemical industry, for example in the hydroformylation (OXO) reaction between CO, H2 and olefins. A number of non-corrin Co-containing enzymes have been described, including methionine aminopep-tidase, prolidase, nitrile hydratase and glucose isomerase. We describe the best characterized of these, namely the E. coli methionine aminopeptidase, a ubiquitous enzyme, which cleaves N-terminal methionine from newly translated polypeptide chains. The active site of the enzyme (Figure 15.13) contains two Co(II) ions that are coordinated by the side-chain atoms of five amino acid residues. The distance between the two Co2+ is similar to that between the two Zn2+ atoms in leucine aminopeptidase, and indeed the catalytic mechanism of methionine aminopeptidase shares many features with other metalloproteases, in particular leucine aminopeptidases. [Pg.268]

As shown in Scheme 1, NHase catalyzes the conversion of nitriles to amides 4), The active site contains either a non-corrin cobalt(III) or non-heme iron(III). Amino acid sequence comparisons have shown that the primary coordination sphere is conserved regardless of the identity of the metal center and consists of a -C-S-L-C-S-C- motif (5). EPR studies on Fe-NHase revealed the iron center maintains a low-spin Fe(III) state throughout the catalytic cycle, and that the iron center has a variable coordination site for substrate interaction (6). These findings are consistent with the hypothesis that the enzyme functions solely as a hydrolytic (i.e., redox-inactive) catalyst. Incubation of the enzyme with nitric oxide in the dark inactivates the enzyme. Exposure to light was found to reinstate activity with concomitant loss of NO, thus revealing a novel photo-regulatory mechanism (7-70). [Pg.100]


See other pages where Non-corrin cobalt is mentioned: [Pg.257]    [Pg.264]   
See also in sourсe #XX -- [ Pg.268 ]




SEARCH



Corrin

Corrines

© 2024 chempedia.info