Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroso reaction with hydroxylamines

One of the reactions which has been used to prepare azoxy compounds is the condensation of C-nitroso compounds with hydroxylamines. In the aliphatic series this reaction is quite general and permits the preparation of unsym-metrical azoxy compounds. In the case of aromatic compounds, however, only symmetrical azoxy compounds can be synthesized reliably. In the reaction of dissimilar aromatic nitroso compounds and aromatic hydroxylamines, a complex mixture of azoxy products is obtained. [Pg.180]

It is self-evident that one of the simpler methods of preparing unsymmetrically substituted azoxy compounds must involve the condensation of two distinctly different starting materials. In principle, the reaction of C-nitroso compounds with hydroxylamines meets this requirement (Eq. 1). [Pg.182]

A. Reaction of C-Nitroso Compounds with Hydroxylamines and Related Compounds. 347... [Pg.427]

In addition, nitroso compounds can also participate in condensation reactions with hydroxylamines to produce azoxy compounds. ... [Pg.236]

In a reaction similar to 12-50, azoxy compounds can be prepared by the condensation of a nitroso compound with a hydroxylamine. The position of the oxygen in the final product is determined by the nature of the R groups, not by which R groups came from which starting compound. Both R and R can be alkyl or aryl, but when two different aryl groups are involved, mixtures of azoxy compounds (ArNONAr, ArNONAr, and Ar NONAr ) are obtained and the unsymmetrical product (ArNONAr ) is likely to be formed in the smallest amount. This behavior is probably caused by an equilibration between the starting compounds prior to the actual reaction (ArNO -I- Ar NHOH Ar NO - - ArNHOH). The mechanism has been investigated in the presence of base. Under these conditions both reactants are converted to radical anions, which couple ... [Pg.819]

Nitroaromatic Reduction Nitroaromatics constitute an important class of potential environmental contaminants, because of their wide use in agrochemicals, textile dyes, munitions, and other classes of industrial chemicals. Reduction of nitroaromatics produces amines, throngh a series of electron transfer reactions with nitroso and hydroxylamines as intermediates (Fig. 13.1). Compared to the parent nitroaromatic compound, all intermediates typically reduce readily (Larson and Weber 1994). [Pg.279]

Aliphatic and aromatic nitroso compounds are powerful dienophiles and react with a variety of acyclic, cychc and heterocyclic 1,3-dienes producing cyclic hydroxylamines. The reaction proceeds with a high regioselectivity at room temperature (equation 99 291-293 Asymmetric variation of the reaction with chiral copper-BINAP catalyst has been reported ". The cycloaddition is reversible and some amounts of diene and nitroso components may be observed in reaction products. [Pg.149]

Although electrochemical oxidation of Al-cyclohexyl-Al-hydroxylamine in the presence of pyridine afforded the corresponding dimeric nitroso compound with a low yield, A-hydroxy t-alkylamines were transformed into the corresponding nitroso compounds (equation 8) . Similarly, A-phenylhydroxylamine was transformed into nitrosobenzene under similar reaction conditions. ... [Pg.502]

A convenient synthetic procedure for the preparation of azo compounds, particularly unsymmetrically substituted ones, involves the reaction of aromatic nitroso compounds with aromatic amines [31a, b]. The reaction is of particular interest because the replacement of the amine by the corresponding hydroxylamine leads to the formation of the related azoxy compounds (see Chapter 15, Azoxy Compounds ). [Pg.158]

Hydroxylamines play a significant role in modern industrial chemistry. Their most important chemical properties include differential reactivity of the N and O termini, changes in reactivity with pH and solubility in both aqueous and organic solvents. Hence the study of reactions of hydroxylamine derivatives, especially their oxidation to nitroso compounds, constitutes an important area of investigation. [Pg.109]

Schenk et al. have used the a-chloro nitroso compound 93 for the reaction with cyclopentene 98 in order to solve the problem with the instability of the allyl amine product formed from the reaction with nitroso compounds [56c]. The product formed, 99, rearranges to the stable nitrone hydrochloride salt 100, which is easily hydrolyzed to the hydroxylamine 101 (Eq. (23)). [Pg.27]

Heating o-nitrosophenols with hydroxylamine is reported to give furazans, naphtho[l,2-c]furazan (95) being formed from both l-nitroso-2-naphthol and 2-nitroso-l-naphthol, presumably by oximation of the tautomeric o-naphthoquinone monooximes and subsequent dehydration. Compound (95) has also been prepared by oxidation, using alkaline ferri-cyanide or hypochlorite, of l-amino-2-nitroso- and 2-amino-l-nitroso-naphthalene. This latter approach is suitable for heterocyclic fused furazans thus 4,6-diamino-5-nitrosopyrimidine is converted into the furazanopyrimidine (96) by oxidation with lead tetraacetate (71JOC3211). In a similar reaction alkaline hypochlorite oxidizes o-nitrosoacetaniiide to benzofurazan in quantitative yield. [Pg.418]

Aromatic and aliphatic primary amines can be oxidized to the corresponding nitro compounds by peroxy acids and by a number of other reagents. The peroxy acid oxidations probably go by way of intermediate hydroxylamines and nitroso compounds (Scheme 2). Various side reactions can therefore take place, the nature of which depends upon the structure of the starting amine and the reaction conditions. For example, aromatic amines can give azoxy compounds by reaction of nitroso compounds with hy-droxylamine intermediates aliphatic amines can give nitroso dimers or oximes formed by acid-catalyz rearrangement of the intermediate nitrosoalkanes (Scheme 3). [Pg.736]

Aliphatic nitroso compounds can be prepared from IV-alkylhydioxylamines oxidation widi bromine, chlorine or sodium hypochlorite in weakly acidic solution, reaction with potassium dichromate in acetic or sulfuric acid, and by oxidation widi yellow mercury(II) oxide in suspension in an organic solvent. Silver carbonate on Celite has also been used to prepare aliphatic nitroso compounds, such as ni-trosocyclohexane, in high yield from the corresponding hydroxylamines." Aqueous sodium periodate and tetraalkylanunonium periodates, which are soluble in organic solvents, are the reagents most commonly used for the oxidation of hydroxamic acids and IV-acylhydroxylamines to acylnitroso compounds... [Pg.748]

In a reaction similar to 13-24, azoxy compounds can be prepared by the condensation of a nitroso compound with a hydroxylamine. The position of the oxygen in the final product is determined by the nature of the R groups, not by which R groups came from which starting compound. Both R and R can be alkyl or aryl, but when two different aryl groups are involved, mixtures of azoxy compounds... [Pg.848]

Nitroso compounds and hydroxylamines can be reduced to amines by the same reagents that reduce nitro compounds (19-45). Reaction with CuCl, and then phe-nylboronic acid (p. 815), also reduces nitroso compounds to the amine.A hydroxylamine can be reduced to the amine with CS2 in acetonitrile. Indium metal in EtOH/aq. NH4CI reduces hydroxylamines to the amine. V-Nitroso compounds are similarly reduced to hydrazinesm R2N—NO R2N-NH2. ... [Pg.1819]

The oxidants dimethyl sulfoxide and nitroso compounds react easily with oL-bromo ketones and convert them into a-dicarbonyl compounds. The reaction with nitroso compounds is usually carried out in the presence of pyridine and proceeds through a nitrone stage. Phenacyl bromide (a-bromoacetophenone) is thus transformed first into phenacylpyridinium bromide and further, with nitrosobenzene, into a-ketoaldonitrone, which is subsequently treated with hydroxylamine to give phenylglyoxal monoxime or with phenylhydrazine to give phenylglyoxal osazone [985] (equation 411). [Pg.201]


See other pages where Nitroso reaction with hydroxylamines is mentioned: [Pg.1659]    [Pg.1280]    [Pg.130]    [Pg.1024]    [Pg.1026]    [Pg.163]    [Pg.259]    [Pg.231]    [Pg.430]    [Pg.1104]    [Pg.639]    [Pg.130]    [Pg.146]    [Pg.355]    [Pg.357]    [Pg.345]    [Pg.27]    [Pg.30]    [Pg.124]    [Pg.84]    [Pg.130]    [Pg.398]    [Pg.342]   
See also in sourсe #XX -- [ Pg.75 , Pg.79 ]

See also in sourсe #XX -- [ Pg.75 , Pg.79 ]




SEARCH



Hydroxylamine reaction

Hydroxylamine reaction with nitroso compounds

Hydroxylamines reaction

Hydroxylamines reaction with nitroso groups

Reaction with hydroxylamine

Reaction with hydroxylamines

© 2024 chempedia.info