Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitroalkenes alkylation

The Barton-Zard reaction refers to the base-induced reaction of nitroalkenes 1 with alkyl a-isocyanoacetates 2 to afford pyrroles 3. Solvents used are THF or alcohols (or mixtures) and the reaction often proceeds at room temperature. [Pg.70]

The Barton-Zard (BZ) pyrrole synthesis is similar both to the van Leusen pyrrole synthesis that uses Michael acceptors and TosMlC (Section 6.7) and the Montforts pyrrole synthesis using a,P-unsaturated sulfones and alkyl a-isocyanoacetates." An alternative to the use of the reactive nitroalkenes 1 is their in situ generation from P-acetoxy nitroalkanes, which are readily prepared via the Henry reaction between an aldehyde and a nitroalkane followed by acetylation. Examples are shown later. [Pg.70]

Nitro compounds have been converted into various cyclic compounds via cycloaddidon reactions. In particular, nitroalkenes have proved to be nsefid in Diels-Alder reactions. Under thermal conditions, they behave as electron-deficient alkenes ind react v/ith dienes to yield 3-nitrocy-clohexenes. Nitroalkenes c in also act as heterodienes ind react v/ith olefins in the presence of Lewis acids to yield cyclic alkyl nkronates, which undergo [3- 2 cycloaddidon. Nitro compounds are precursors for nitnie oxides, alkyl nitronates, and trialkylsilyl nitronates, which undergo [3- 2 cycloaddldon reacdons. Thus, nitro compounds play important roles in the chemistry of cycloaddidon reacdons. In this chapter, recent developments of cycloaddinon chemistry of nitro compotmds and their derivadves are summarized. [Pg.231]

Thepreparadonof resin-bound nitroalkenes via a micro wave-assisted Knoevenagel reacdon of resin-bound nitroacedc acid v/ith aryl and alkyl subsdnited Mdehydes is reported. The potendiil of these resin-bound nitroalkenes for apphcadon in combmatorlM chemistry is demonstratedby a Diels-Alder reacdon v/ith 2,3-dimethylbutadienefScheme 8 9) Iris Mso used for one-pot three-component tandem [4t-2 /[3t-2 reacdons v/ith ethyl vinyl ether and styrene... [Pg.243]

Barton and Zard found that the base-catalyzed reacdon of nitroalkenes or fi-n v/ith alkyl isocyanoacetate or TosMIC gives pyrrole-3-carboxylates or 3-suifonylpyrroles, respecdvely fsee Eqs 10 18 and 10 19) This reacdon is very convenient for the synthesis of... [Pg.329]

Dithio-l-nitroalkenes are prepared by the reacdon of nitromethane v/ith CS and KOH followed by alkyladonv/ith alkyl halides CEq. 10.84. They are important reagents forsynthesis... [Pg.356]

Michael addition of alkyl organometallic reagents to a,/ -disubstituted nitroalkenes followed by protonation of the intermediate nitronate anion generally gives mixtures of syn- and anti-diastereomers with poor diastereoselectivity19. [Pg.1018]

Alkylation of ketene silyl acetals with nitroalkenes has several limitations such as modest yield, lack of generality, and inconveniently low reaction temperatures. Tucker and coworkers have found that sterically encumbered Lewis acids such as MAD give better results than other Lewis acids (Eq. 4.64).83... [Pg.93]

Seebach and coworkers have found that the addition of dialkylzinc to nitroalkenes is catalyzed by Lewis acids such as MgBr2, Mgl2, and chlorotitanates 96 However, the nitro group of nitrostyrene is replaced by alkyl groups in the absence of Lewis acids (Scheme 4.15) 97 Replacement of vinylic nitro groups by alkyl groups is unusual, for nitroalkenes are good... [Pg.96]

The preparation of resin-bound nitroalkenes via a microwave-assisted Knoevenagel reaction of resin-bound nitroacetic acid with aryl and alkyl substituted aldehydes is reported. The potential of these resin-bound nitroalkenes for application in combinatorial chemistry is demonstrated by a Diels-Alder reaction with 2,3-dimethylbutadiene (Scheme 8.9). It is also used for one-pot three-component tandem [4+2]/[3+2] reactions with ethyl vinyl ether and styrene 46... [Pg.243]

Asymmetric Diels-Alder reactions using chiral sulfinylalkenes have been extensively studied by Koizumi and coworkers.55 Fuji and coworkers have extended this strategy to chiral l-(alkyl-sulfinyl)-2-nitroalkenes. Such nitroalkenes react with reactive dienes such as Danishefsky s dienes to produce an adduct with a high enantiomeric excess (ee) (see Eqs. 8.34 and 8.35).57... [Pg.247]

Alkyl and silyl nitronates are, in principle, /V-alkoxy and /V-silyloxynitrones, and they can react with alkenes in 1,3-dipolar cycloadditions to form /V-alkoxy- or /V-silyloxyisoxaz.olidine (see Scheme 8.25). The alkoxy and silyloxy groups can be eliminated from the adduct on heating or by acid treatment to form 2-isoxazolines. It should be noticed that isoxazolines are also obtained by the reaction of nitrile oxides with alkenes thus, nitronates can be considered as synthetic equivalents of nitrile oxides. Since the pioneering work by Torssell et al. on the development of silyl nitronates, this type of reaction has become a useful synthetic tool. Recent development for generation of cyclic nitronates by hetero Diels-Alder reactions of nitroalkenes is discussed in Section 8.3. [Pg.267]

Dipolar addition to nitroalkenes provides a useful strategy for synthesis of various heterocycles. The [3+2] reaction of azomethine ylides and alkenes is one of the most useful methods for the preparation of pyrolines. Stereocontrolled synthesis of highly substituted proline esters via [3+2] cycloaddition between IV-methylated azomethine ylides and nitroalkenes has been reported.147 The stereochemistry of 1,3-dipolar cycloaddition of azomethine ylides derived from aromatic aldehydes and L-proline alkyl esters with various nitroalkenes has been reported. Cyclic and acyclic nitroalkenes add to the anti form of the ylide in a highly regioselective manner to give pyrrolizidine derivatives.148... [Pg.274]

In recent years, the importance of aliphatic nitro compounds has greatly increased, due to the discovery of new selective transformations. These topics are discussed in the following chapters Stereoselective Henry reaction (chapter 3.3), Asymmetric Micheal additions (chapter 4.4), use of nitroalkenes as heterodienes in tandem [4+2]/[3+2] cycloadditions (chapter 8) and radical denitration (chapter 7.2). These reactions discovered in recent years constitute important tools in organic synthesis. They are discussed in more detail than the conventional reactions such as the Nef reaction, reduction to amines, synthesis of nitro sugars, alkylation and acylation (chapter 5). Concerning aromatic nitro chemistry, the preparation of substituted aromatic compounds via the SNAr reaction and nucleophilic aromatic substitution of hydrogen (VNS) are discussed (chapter 9). Preparation of heterocycles such as indoles, are covered (chapter 10). [Pg.381]

The C2-symmetric bifunctional tridentate bis(thiazoline) 222 has been shown to promote the zinc(II)-catalyzed asymmetric Michael addition of nitroalkanes to nitroalkenes in high enantioselectivity <06JA7418>. The corresponding bis(oxazoline) ligand provides comparable enantioselectivity but higher product yield. The same bis(thiazoline) ligand has also been evaluated in the enantioselective Friedel-Crafts alkylation of indoles, but the enantioselectivity is moderate <06OL2115>. [Pg.261]

The formation of nitrocyclobutanes (44) is attributed to the contribution of the structure B" to the reactivity of stabilized zwitterionic intermediate B. The contribution of C-alkylation decreases due to steric hindrance caused by the presence of substituents at the a-position of the initial nitroalkene (42). [Pg.465]

The nucleophilic addition of nitroalkane to carbonyl groups is known as the Henry reaction. The products of the Henry reaction are 2-nitroalkanols,115 which are useful intermediates for nitroalkenes, 2-amino alcohols, and 2-nitro-ketones. However, this does not always give high yields because of the possible O-alkylation in preference to C-alkylation during the Henry reaction. [Pg.187]

Conjugate alkylation of nitroalkenes. R3A1 or the etherate reacts rapidly with a,p-unsaturated nitro compounds to form products of 1,4-addition.1 Example ... [Pg.217]

Poor stereoselectivity (<30% ee) is recorded for the Michael addition of 1,3-di-ketones with nitroalkenes using cinchona bases [50] and early work recorded <25% ee using N-methylquininium and quinidinium hydroxides [51, 52], In contrast, indanones have been reported to react with methyl vinyl ketone in the presence of a cinchoninium salts to produce a chiral (S)-product in >95% yield (80% ee) [7]. Surprisingly, the (R)-isomer is obtained less readily (ee 40-60%) using cinchoni-dinium salts. Both isomers are obtained in high optical purity (>80% ee) via alkylation with 1,3-dichlorobut-2-ene and subsequent ring closure yields the Robinson... [Pg.529]

The Ir(lll) complex also funchoned as a catalyst in a tandem Nazarov cyclization-Michael addition. The reaction of monocyclic a-alkylidene-P-keto-y.b-unsaturated ester with nitroalkene gave bicyclic cyclopentenones which possessed an alkyl side chain, with high yield and diastereoselectivity (Scheme 11.36) [47]. [Pg.292]

Base-induced reaction of nitroalkenes with alkyl a-isocyanoacetates to afford pyrroles. [Pg.34]

Akiyama and coworkers extended the scope of electrophiles applicable to asymmetric Brpnsted acid catalysis with chiral phosphoric acids to nitroalkenes (Scheme 57). The Friedel-Crafts alkylation of indoles 29 with aromatic and aliphatic nitroalkenes 142 in the presence of BINOL phosphate (7 )-3r (10 mol%, R = SiPhj) and 3-A molecular sieves provided Friedel-Crafts adducts 143 in high yields and enantioselectivities (57 to >99%, 88-94% ee) [81]. The use of molecular sieves turned out to be critical and significantly improved both the yields and enantioselectivities. [Pg.440]

Scheme 57 Friedel-Crafts alkylation of indoles with nitroalkenes... Scheme 57 Friedel-Crafts alkylation of indoles with nitroalkenes...
Under optimized conditions, the 83-catalyzed (1 mol% loading) Michael addition of acetylacetone to various aryl nitroalkenes as well as alkyl nitroalkenes proceeded in good to excellent yields (80-97%) and enantioselechvities (82-99%) of the desired adducts 1-5 (Scheme 6.93). The authors also reported the successful enantioselective Michael addihon of l,3-diphenylpropane-l,3-dione (adduct in... [Pg.236]

Connon and co-workers synthesized a small library of novel axially chiral binaphthyl-derived bis(thio)ureas 152-165 and elucidated the influence of the steric and electronic characteristics of both the chiral backbone and the achiral N-aryl(alkyl) substituents on catalyst efficiency and stereodifferentiation in the FC type additions of indole and N-methylindole to nitroalkenes (Figure 6.50) [315]. [Pg.299]


See other pages where Nitroalkenes alkylation is mentioned: [Pg.691]    [Pg.280]    [Pg.691]    [Pg.280]    [Pg.255]    [Pg.267]    [Pg.274]    [Pg.1021]    [Pg.95]    [Pg.155]    [Pg.305]    [Pg.306]    [Pg.169]    [Pg.420]    [Pg.255]    [Pg.110]    [Pg.255]    [Pg.933]    [Pg.153]    [Pg.154]    [Pg.159]    [Pg.249]   
See also in sourсe #XX -- [ Pg.193 , Pg.194 ]

See also in sourсe #XX -- [ Pg.174 ]




SEARCH



Alkenes nitroalkenes, alkylation

Alkyl nitronates nitroalkene cycloaddition

Alkylations nitroalkenes, pyrrole

Friedel-Crafts alkylation of indoles with nitroalkenes

Friedel-Crafts alkylation reactions nitroalkenes

Nitroalkene

Nitroalkenes

Nitroalkenes Friedel-Crafts alkylation

Nitroalkenes alkyl-substituted

Thiourea Friedel-Crafts alkylation, nitroalkenes

© 2024 chempedia.info