Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrite ligands, reduction

It is possible that in the use of alkali metal nitrites for nitrosyl synthesis, the first formed nitrito complex undergoes rapid ligand reduction similar to that above, as in equations (15) and (16). [Pg.109]

The ferrocene moiety is not just an innocent steric element to create a three-dimensional chiral catalyst environment. Instead, the Fe center can influence a catalytic asymmetric process by electronic interaction with the catalytic site, if the latter is directly coimected to the sandwich core. This interaction is often comparable to the stabilization of a-ferrocenylcarbocations 3 (see Sect. 1) making use of the electron-donating character of the Cp2Fe moiety, but can also be reversed by the formation of feirocenium systems thereby increasing the acidity of a directly attached Lewis acid. Alternative applications in asymmetric catalysis, for which the interaction of the Fe center and the catalytic center is less distinct, have recently been summarized in excellent extensive reviews and are outside the scope of this chapter [48, 49], Moreover, related complexes in which one Cp ring has been replaced with an ri -arene ligand, and which have, for example, been utilized as catalysts for nitrate or nitrite reduction in water [50], are not covered in this chapter. [Pg.152]

Gomez Arrayas R, Adrio J, Carretero JC (2006) Recent applications of chiral ferrocene ligands in asymmetric catalysis. Angew Chem Int Ed 45 7674—7715 Dai LX, Hou XL (2010) Chiral ferrocenes in asymmetric catalysis. Wiley-VCH, Weinheim Rigaut S, Delville MH, Losada J, Astrac D (2002) Water-soluble mono- and star-shaped hexanuclear functional organoiron catalysts for nitrate and nitrite reduction in water syntheses and electroanalytical study. Inorg Chim Acta 334 225-242... [Pg.172]

The monovalent Co chemistry of amines is sparse. No structurally characterized example of low-valent Co complexed exclusively to amines is known. At low potentials and in non-aqueous solutions, Co1 amines have been identified electrochemically, but usually in the presence of co-ligands that stabilize the reduced complex. At low potential, the putative monovalent [Co(cyclam)]+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) in NaOH solution catalyzes the reduction of both nitrate and nitrite to give mixtures of hydroxylamine and ammonia.100 Mixed N-donor systems bearing 7r-acceptor imine ligands in addition to amines are well known, but these examples are discussed separately in Section 6.1.2.1.3. [Pg.9]

To provide a model for nitrite reductases72 Karlin and co-workers characterized a nitrite-bound complex (226) (r = 0.05)214 In an endeavor to model nitrite reductase activity, Tanaka and co-workers prepared a few mononuclear complexes (227) (r = 0.74)215 (228) (r = 0.82),216 (229) (r = 0.97),217 (230) (r = 0.16),217 (231) (r = 0.07),217 and (232) (r = 0.43 and r = 0.53)217 and studied the electrochemical reduction of N02A As a part of their activity on modeling heme-copper terminal oxidases, Holm and co-workers prepared complex (233) (r = 0.96).218 Using a sterically hindered tris(pyridylmethyl)amine, Canary et al. prepared a complex (234) (r=1.00), studied its redox behavior, and discussed various factors that may contribute to the difference (higher potential for the new complex) in the redox potential of a Cu Cu1 couple between substituted and unsubstituted ligands.2 9... [Pg.783]

However, the latter residue is in no sense equivalent to the Tyr 25 of the P. pantotrophus enzyme. The Tyr 10, which is not an essential residue (19), is provided by the other subunit to that in which it is positioned close to the di heme iron (Fig. 6). In other words, there is a crossing over of the domains. A reduced state structure of the P. aeruginosa enzyme has only been obtained with nitric oxide bound to the d heme iron (20) (Fig. 6). As expected, the heme c domain is unaltered by the reduction, but the Tyr 10 has moved away from the heme d iron, and clearly the hydroxide ligand to the d heme has dissociated so as to allow the binding of the nitric oxide (Fig. 6). This form of the enzyme was prepared by first reducing with ascorbate and then adding nitrite. [Pg.176]

In summary, there is still much to understand about the nitrite reduction reaction. The crystal structures have shown how nitrite can bind to the di heme iron and protons can be provided to one of its oxygen atoms from two histidine residues. However, as yet no rapid reaction study has detected the release of product nitric oxide rather than the formation of the inhibitory dead-end ferrous di heme-NO complex. It is also not clear why the rate of interheme electron transfer is so slow over 11 A when nitrite or nitric oxide is the ligand to the d heme. [Pg.181]

It is remarkable that the oxidized states of the cytochromes cdi from P pantotrophus and P. aeruginosa have different structures. It is not clear at present whether one of these structures is superior for catalyzing nitrite reduction. Certainly in the P. pantotrophus enzyme the ligand switching at both ligand centers upon changing oxidation state is... [Pg.184]

Several macrocyclic ligands are shown in Figure 2. The porphyrin and corrin ring systems are well known, the latter for the cobalt-containing vitamin Bi2 coenzymes. Of more recent interest are the hydroporphyrins. Siroheme (an isobacteriochlorin) is the prosthetic group of the sulfite and nitrite reductases which catalyze the six-electron reductions of sulfite and nitrite to H2S and NH3 respectively. The demetallated form of siroheme, sirohydrochlorin, is an intermediate in the biosynthesis of vitamin Bi2, and so links the porphyrin and corrin macrocycles. Factor 430 is a tetrahydroporphyrin, and as its nickel complex is the prosthetic group of methyl coenzyme M reductase. F430 shows structural similarities to both siroheme and corrin. [Pg.546]

The electrochemical transformation of a molybdenum nitrosyl complex [Mo(NO)(dttd)J [dttd = 1,2-bis(2-mercaptophenylthio)ethane] (30) is rather interesting (119). Ethylene is released from the backbone of the sulfur ligand upon electrochemical reduction. The resulting nitrosyl bis(dithiolene) complex reacts with O2 to give free nitrite and a Mo-oxo complex. Multielectron reduction of 30 in the presence of protons releases ethylene and the NO bond is cleaved, forming ammonia and a Mo-oxo complex (Scheme 15). The proposed reaction mechanism involves successive proton-coupled electron-transfer steps reminiscent of schemes proposed for Mo enzymes (120). [Pg.302]

Finally we note that enzymatic reduction of N02 and N03 is important in the natural nitrogen cycle. Copper-containing reductases are known and, as models, copper(I) nitrite complexes with triazacyclononane ligands have been shown to evolve NO.54... [Pg.333]


See other pages where Nitrite ligands, reduction is mentioned: [Pg.756]    [Pg.470]    [Pg.73]    [Pg.468]    [Pg.226]    [Pg.476]    [Pg.115]    [Pg.760]    [Pg.793]    [Pg.247]    [Pg.172]    [Pg.174]    [Pg.184]    [Pg.184]    [Pg.348]    [Pg.224]    [Pg.280]    [Pg.313]    [Pg.318]    [Pg.70]    [Pg.79]    [Pg.111]    [Pg.155]    [Pg.1350]    [Pg.726]    [Pg.255]    [Pg.203]    [Pg.206]    [Pg.27]    [Pg.379]    [Pg.206]    [Pg.220]    [Pg.53]    [Pg.60]   
See also in sourсe #XX -- [ Pg.298 ]




SEARCH



Nitrites reduction

Reductants nitrite

© 2024 chempedia.info