Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitriles => alkyl halides

Under these conditions esters, carboxylic acids, lactones, amides, nitriles, alkyl halides, and nilro compounds arc not reduced. Some of the groups are reduced, however, in refluxing 2-cthyHiexanol (I30 ). [Pg.394]

Strictly speaking the alkyl halides are esters of the halogen acids, but since they enter into many reactions (t.g., formation of Grignard reagents, reaction with potassium cyanide to yield nitriles, etc.) which cannot be brought about by the other eaters, the alkyl halides are usually distinguished from the esters of the other inorganic acids. The preparation of a number of these is described below. [Pg.302]

Primary and secondary alkyl halides may be converted to the next higher carboxylic acid by a two step synthetic sequence involving the preparation and hydrolysis of nitriles Nitnles also known as alkyl cyanides are prepared by nucleophilic substitution... [Pg.808]

Nitriles contain the —C=N functional group We have already discussed the two mam procedures by which they are prepared namely the nucleophilic substitution of alkyl halides by cyanide and the conversion of aldehydes and ketones to cyanohydrins Table 20 6 reviews aspects of these reactions Neither of the reactions m Table 20 6 is suitable for aryl nitriles (ArC=N) these compounds are readily prepared by a reaction to be dis cussed m Chapter 22... [Pg.867]

Because nitriles can be prepared from alkyl halides by nucleophilic substitution with cyanide ion the overall process RX RC=N RCH2NH2 leads to primary amines that have one more carbon atom than the starting alkyl halide... [Pg.932]

Lithium aluminum hydride (LiAlH4) is the most powerful of the hydride reagents. It reduces acid chlorides, esters, lactones, acids, anhydrides, aldehydes, ketones and epoxides to alcohols amides, nitriles, imines and oximes to amines primary and secondary alkyl halides and toluenesulfonates to... [Pg.61]

The large rate enhancements observed for bimolecular- nucleophilic substitutions in polar- aprotic solvents are used to advantage in synthetic applications. An example can be seen in the preparation of alkyl cyanides (nitriles) by the reaction of sodium cyanide with alkyl halides ... [Pg.347]

Nucleophilic substitution by cyanide ion (Sections 8.1, 8.13) Cyanide ion is a good nucleophile and reacts with alkyl halides to give nitriles. The reaction is of the S m2 type and is limited to primary and secondary alkyl halides. Tertiary alkyl halides undergo elimination aryl and vinyl halides do not react. [Pg.867]

Section 20.18 Nitriles are prepared by nucleophilic substitution (Sn2) of alkyl halides with cyanide ion, by converting aldehydes or ketones to cyanohydrins (Table 20.6), or by dehydration of fflnides. [Pg.877]

Stereochemical positioning of a functional group, relative to a separate enamine moiety in the same molecule, can be done in such a manner that a simple intramolecular alkylation or acylation will cause cyclization. Such intramolecular cycloalkylations with alkyl halides have been reported 107,108). Inftamolecular cycloacylations of enamines with esters 109, 110,110a) and with nitriles 110a,l 11,111a) have also been observed. [Pg.233]

The reaction works well with primary alkyl halides, especially with allylic and benzylic halides, as well as other alkyl derivatives with good leaving groups. Secondary alkyl halides give poor yields. Tertiary alkyl halides react under the usual reaction conditions by elimination of HX only. Nitriles from tertiary alkyl halides can however be obtained by reaction with trimethylsilyl cyanide 4 ... [Pg.185]

Chain extension by means of the reaction of alkyl halides with cyanide is frequently alluded to but rarely employed, mainly because of the long reaction times and poor yields usually encountered. The use of DMSO as a solvent has greatly simplified the procedures and improved the yields of many ionic reactions, and the conversion of alkyl chlorides to nitriles is a good example. [Pg.140]

Several improved methods for the nitradon of alkyl halides have been reported. For example, the use of KNO in the presence of IS-crown-d or nitrile ion boimded lo macroporous qualemary ammonium amberlile resin famberlile IRA 900 improves the yield of nitre com-poimds fEq. 2.49. ... [Pg.18]

Carboxylic acids can be prepared from nitriles by reaction with hot aqueous acid or base by a mechanism that we ll see in Section 20.9. Since nitriles themselves are usually made by Sts 2 reaction of a primary or secondary7 alkyl halide with CN , the two-step sequence of cyanide displacement followed by nitiile hydrolysis is a good way to make a carboxylic acid from an alkyl halide (RBr —> RC=N RC02H). [Pg.762]

The simplest method of nitrile preparation is the Sj 2 reaction of CN with a primary or secondary alkyl halide, as discussed in Section 20.5. Another method for preparing nitriles is by dehydration of a primary amide, RCONH2. Thionyl chloride is often used for the reaction, although other dehydrating agents such as POCI3 also work. [Pg.766]

Both methods of nitrile synthesis—SN2 displacement by CN- on an alkyl halide and amide dehydration—are useful, but the synthesis from amides is more general because it is not limited by steric hindrance. [Pg.767]

Nitriles are similar in some respects to carboxylic acids and are prepared either by SN2 reaction of an alkyl halide with cyanide ion or by dehydration of an amide. Nitriles undergo nucleophilic addition to the polar C=N bond in the same way that carbonyl compounds do. The most important reactions of nitriles are their hydrolysis to carboxylic acids, reduction to primary amines, and reaction with organometallic reagents to yield ketones. [Pg.774]

Preparation of nitriles (Section 20.7) (a) S sj2 reaction of alkyl halides... [Pg.775]

The following carboxylic acid can t be prepared from an alkyl halide by either the nitrile hydrolysis route or the Grignard carboxylation route. Explain. [Pg.777]

An alkylation reaction is used to introduce a methyl or primary alkyl group onto the a position of a ketone, ester, or nitrile by S 2 reaction of an enolate ion with an alkyl halide. Thus, we need to look at the target molecule and identify any methyl or primary alkyl groups attached to an a carbon. In the present instance, the target has an a methyl group, which might be introduced by alkylation of an ester enolate ion with iodomethane. [Pg.863]

Alpha hydrogen atoms of carbonyl compounds are weakly acidic and can be removed by strong bases, such as lithium diisopropylamide (LDA), to yield nucleophilic enolate ions. The most important reaction of enolate ions is their Sn2 alkylation with alkyl halides. The malonic ester synthesis converts an alkyl halide into a carboxylic acid with the addition of two carbon atoms. Similarly, the acetoacetic ester synthesis converts an alkyl halide into a methyl ketone. In addition, many carbonyl compounds, including ketones, esters, and nitriles, can be directly alkylated by treatment with LDA and an alkyl halide. [Pg.866]

We ve already seen in Sections 20.7 and 21.7 how amines can be prepared by reduction of nitriles and amides with LiAlH4. The two-step sequence of 5 2 displacement with C followed by reduction thus converts an alkyl halide into a primary alkylamine having one more carbon atom. Amide reduction converts carboxylic acids and their derivatives into amines with the same number of carbon atoms. [Pg.927]

Annwer We should need keto-ester (17) for this, and even then alkylation with secondary halide (18) is iikely to be poor. Alternatively we could use nitrile (19) but this requires the same alkyl halide (IS). The Michael synthesis on page 133 is best. [Pg.143]


See other pages where Nitriles => alkyl halides is mentioned: [Pg.867]    [Pg.78]    [Pg.107]    [Pg.85]    [Pg.184]    [Pg.18]    [Pg.958]    [Pg.1290]    [Pg.562]    [Pg.562]    [Pg.566]    [Pg.95]    [Pg.35]   
See also in sourсe #XX -- [ Pg.112 , Pg.320 , Pg.572 , Pg.752 ]




SEARCH



Alkyl nitriles

© 2024 chempedia.info