Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nitrile ylides intramolecular cycloadditions

The ring opening of 2//-azirines to yield vinylnitrenes on thermolysis, or nitrile ylides on photolysis, also leads to pyrrole formation (B-82MI30301). Some examples proceeding via nitrile ylides are shown in Scheme 92. The consequences of attempts to carry out such reactions in an intramolecular fashion depend not only upon the spatial relationship of the double bond and the nitrile ylide, but also upon the substituents of the azirine moiety since these can determine whether the resulting ylide is linear or bent. The HOMO and second LUMO of a bent nitrile ylide bear a strong resemblance to the HOMO and LUMO of a singlet carbene so that 1,1-cycloadditions occur to carbon-carbon double bonds rather than the 1,3-cycloadditions needed for pyrrole formation. The examples in Scheme 93 provide an indication of the sensitivity of these reactions to structural variations. [Pg.140]

The evidence obtained clearly indicates that the above photorearrangements proceed by a mechanism involving a nitrile ylide intermediate since cycloadducts could be isolated when the irradiations were carried out in the presence of trapping agents. Intramolecular cycloaddition of the nitrile ylide followed by a 1,3-sigmatropic hydrogen shift of the initially formed five-membered ring readily accounts for the formation of the final product. [Pg.57]

Nitrile ylides derived from the photolysis of 1-azirines have also been found to undergo a novel intramolecular 1,1-cycloaddition reaction (75JA3862). Irradiation of (65) gave a 1 1 mixture of azabicyclohexenes (67) and (68). On further irradiation (67) was quantitatively isomerized to (68). Photolysis of (65) in the presence of excess dimethyl acetylenedicar-boxylate resulted in the 1,3-dipolar trapping of the normal nitrile ylide. Under these conditions, the formation of azabicyclohexenes (67) and (68) was entirely suppressed. The photoreaction of the closely related methyl-substituted azirine (65b) gave azabicyclohexene (68b) as the primary photoproduct. The formation of the thermodynamically less favored endo isomer, i.e. (68b), corresponds to a complete inversion of stereochemistry about the TT-system in the cycloaddition process. [Pg.58]

Reactions of thiocarbonyl ylides with nitriles are scarce. Simple nitriles do not undergo bimolecular cycloaddition (171). There is, however, a single example of an intramolecular case that was reported by Potts and Dery (24c,62). By analogy to the intramolecular cycloaddition with acetylenic dipolarophiles (Scheme 5.40), the primary product derived from the reaction of a thiocarbonyl ylide with a nitrile group undergoes a subsequent elimination of phenylisocyanate to give the fused 1,3-thiazole (131). [Pg.343]

The cyano-substituted nitrile ylides 123 have been generated via 1,1-elimination reactions. For example, the benzyhdene derivative 122 (R=Ph) eliminated benzene on vapor phase pyrolysis to give 123 (R=Ph), which reacted via 1,5-electrocycli-zation [see also (66)] to give the isoindole 124 (41%) (67). In a similar way, 122 [R=(CH2)3CH=CH2] gave the corresponding nitrile yhde that reacted via intramolecular cycloaddition to give the pyrroline derivative 126. [Pg.491]

Intramolecular cycloaddition of nitrile ylides to olefinic dipolarophiles linked to the dipole by a three-atom chain leads to pyrazoles fused to five-membered rings. Work on stereoselectivity in such reactions has been carried out using the reactant 266 in which the alkene moiety is linked to the C-terminus via a tether that incorporates an enantiomerically pure (R) stereogenic group (165). Both diastereo-isomers 267 and 268 were isolated and it was found that the reaction showed moderate stereoselectivity favoring 267. [Pg.512]

On irradiation, (Z)-2-styryl-2//-azirines, e.g. (249), undergo analogous ring fission, followed by intramolecular 1,7-dipolar cycloadditions of the resulting nitrile ylide to give 1 -phenyl-3//-2-benzazepines in high yield (80%) (75JA4682). Naphthoazepines have been prepared similarly. [Pg.540]

Over the last 25 years both nitrile ylides and nitrile imines have continued to provide fascinating and synthetically useful chemistry. In both cases, the exploitation of [3 + 2]-cycloaddition chemistry with an increasing range of dipolarophiles has continued as a key route to five-membered heterocycles. The major development of new chemistry, however, has been in the extensive exploration of intramolecular reactions both in cycloaddition chemistry and in the electrocycliza-tion of 1,3-dipoles with extended conjugation. Such chemistry harnesses the unique reactivity of 1,3-dipoles in the synthesis of relatively elaborate structures but does require the design and preparation of quite complex reactants containing both the 1,3-dipole precursor and the dipolarophilic component. However, access to this chemistry is becoming much easier via the application of new synthetic procedures... [Pg.454]


See other pages where Nitrile ylides intramolecular cycloadditions is mentioned: [Pg.1150]    [Pg.530]    [Pg.836]   
See also in sourсe #XX -- [ Pg.1143 , Pg.1144 ]

See also in sourсe #XX -- [ Pg.4 ]

See also in sourсe #XX -- [ Pg.4 ]




SEARCH



1,3-cycloaddition intramolecular

Nitrile ylide

Nitrile ylides

Nitrile ylides 3+2]-cycloaddition

Nitrile ylides, alkenyl intramolecular cycloadditions

Nitriles cycloaddition

Nitriles cycloadditions

Nitriles intramolecular

Ylides cycloaddition

© 2024 chempedia.info