Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Niobium compounds synthesis

Elsewhere interaction of niobium with its monooxofluoride complexes in the NaCl-KCl melt has been studied[12]. Such interaction results in deoxidation of the melt, the appearance in the melt of Nb(IV) fluoride complexes and formation of oxide phases on the metal surface. This interaction plays an extremely important role in synthesis of oxygen-containing niobium compounds. [Pg.192]

Electrochemical synthesis of titanium, zirconium and hafnium diborides Electrochemical transients Electrochemical reduction of niobium Electrochemical synthesis of new niobium compounds... [Pg.269]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

The synthesis of tantalum and niobium fluoride compounds is, above all, related to the fluorination of metals or oxides. Table 3 presents a thermodynamic analysis of fluorination processes at ambient temperature as performed by Rakov [51, 52]. It is obvious that the fluorination of both metals and oxides of niobium and tantalum can take place even at low temperatures, whereas fluorination using ammonium fluoride and ammonium hydrofluoride can be performed only at higher temperatures. [Pg.11]

Synthesis of the compounds from such HF solutions is performed by adding soluble fluoride compounds to the tantalum or niobium solution or by recrystallization of prepared fluoride compounds from water or HF solutions of different concentrations. In the first case, the composition of the compounds obtained depends on the ratio between Ta/Nb and the added metal and on the initial concentration of the HF used, whereas in the second case, it depends only on the HF concentration. [Pg.13]

Potassium-containing tantalum and niobium fluoride compounds can be precipitated from HF solutions as described previously (see Fig. 3 and 4). Ritchie and Mitra [59] described the synthesis of K.2TaF7 in an HF solution, based on the following interaction (5), using TaCl5 as a precursor ... [Pg.16]

Attempts to obtain fluoride compounds of niobium and tantalum with alkali earth and some transitional metals were made as early as one hundred years ago, but synthesis and identification methods were described only at later times. [Pg.19]

The results available on the synthesis of niobium and tantalum fluoride compounds from aqueous solutions are in good correlation with the concept of... [Pg.19]

Another anhydrous solvent that is frequently used for the synthesis of tantalum and niobium fluoride compounds is bromine trifluoride, BrF3. At ambient temperature, bromine trifluoride is light yellow liquid characterized by a boiling point of 126°C, a melting point of 9°C and a density of 2.84 g/cm3 at melting temperature. [Pg.23]

The most universal method for the synthesis of tantalum and niobium fluoride compounds is based on direct interaction between their pentafluorides, TaF5 or NbFs, and fluorides of other metals. Some physical-chemical properties of these compounds are presented in Table 8 [71, 72]. [Pg.24]

Niobium dioxyfluoride, Nb02F, and tantalum dioxyfluoride, Ta02F, can be successfully used as precursors for the synthesis of many oxyfluoride compounds of niobium and tantalum. Systematic investigations performed on MeC>2F - M2CO3 systems, in which Me = Nb or Ta and M = alkali metal, provided necessary information on optimal synthesis procedures and imparted some conformity on the mechanism of the chemical interaction between the components. [Pg.26]

Hydrofluoride synthesis is based on the simultaneous fluorination by ammonium hydrofluoride of niobium or tantalum oxides with other metals compounds (oxides, halides, carbonates etc.) [105]. Table 13 presents some properties of ammonium hydrofluoride, NH4HF2 [51, 71]. Ammonium hydrofluoride is similar to anhydrous HF in its reactivity, but possesses some indisputable advantages. The cost of ammonium hydrofluoride is relatively low, it can be dried and handled easily, recycled from gaseous components, and its processing requires no special equipment. [Pg.38]

Thus, the sequence of phases that are formed in hydrofluoride synthesis of lithium-niobium fluoride compounds is (NH4)3NbOF6 - (NH NbOFs -LiNbOF4-Li2NbOF5. [Pg.51]

For a long period of time, molten salts containing niobium and tantalum were widely used for the production by electrolysis of metals and alloys. This situation initiated intensive investigations into the electrochemical processes that take place in molten fluorides containing dissolved tantalum and niobium in the form of complex fluoride compounds. Well-developed sodium reduction processes currently used are also based on molten salt media. In addition, molten salts are a suitable reagent media for the synthesis of various compounds, in the form of both single crystals and powdered material. The mechanisms of the chemical interactions and the compositions of the compounds depend on the structure of the melt. [Pg.135]

The first alkali metal-niobium-arsenic compounds were synthesized by accident while attempting the synthesis of alkali-metal main-group arsenides at relatively high temperature. It turns out that niobium and tantalum containers react readily... [Pg.199]

The sol-gel method of preparing lithium niobate used lithium and niobium alkoxides. Alkoxides are often used in CVD methods, but unfortunately for the preparation of lithium niobate, lithium alkoxides are much less volatile than niobium alkoxides and to get the two metals deposited together it is better to use compounds of similar volatility. One way around this problem is to use a more volatile compound of lithium. One reported synthesis uses a p diketonate of lithium in which lithium is coordinated to 2,2,6,6-tetramethylheptan-3,5-dione (Me3CCOCH2COCMe3) (Figure 3.11). [Pg.169]

Compounds containing niobium or tantalum in negative formal oxidation states -I and -III are mainly metal carbonyl anions. Although these are organometallic derivatives, the report of efficient procedures for the synthesis of [M(CO)6] since the review of Labinger8 merits mention, as it can be anticipated that these highly reduced and reactive species will be important precursors of a large variety of new coordination compounds and metal clusters. [Pg.684]

In the present work the synthesis of highly dispersed niobium or titanium containing mesoporous molecular sieves catalyst by direct grafting of different niobium and titanium compounds is reported. Grafting is achieved by anchoring the desired compounds on the surface hydroxyl groups located on the inner and outer surface of siliceous MCM-41 and MCM-48 mesoporous molecular sieves. Catalytic activity was evaluated in the liquid phase epoxidation of a-pinene with hydrogen peroxide as oxidant and the results are compared with widely studied titanium silicalites. The emphasis is directed mainly on catalytic applications of niobium or titanium anchored material to add a more detailed view on their structural physicochemical properties. [Pg.328]

The compound niobium tetrafluoride is of importance because of the increased interest in reactions of metal tetrafluorides with basic ligands. Previous syntheses given for this compound are time consuming, generally cannot be scaled up to prepare larger quantities, or require expensive equipment not always readily available. In this synthesis, simple methods are described for the preparation of niobium(V) fluoride and niobium(IV) fluoride, which should make these compounds readily available to chemists for further comparison studies with other metal tetrafluorides. [Pg.105]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]


See other pages where Niobium compounds synthesis is mentioned: [Pg.464]    [Pg.69]    [Pg.11]    [Pg.38]    [Pg.41]    [Pg.309]    [Pg.324]    [Pg.79]    [Pg.83]    [Pg.220]    [Pg.566]    [Pg.602]    [Pg.17]    [Pg.672]    [Pg.327]    [Pg.330]    [Pg.376]    [Pg.2054]    [Pg.46]    [Pg.65]    [Pg.314]    [Pg.17]    [Pg.101]    [Pg.144]    [Pg.300]    [Pg.11]   


SEARCH



Niobium compounds

Niobium synthesis

© 2024 chempedia.info