Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nicotinic acid, biosynthesis

The result of this biosynthesis is that the product is nicotinic acid mononucleotide rather than free nicotinic acid. Ingested nicotinic acid is converted to nicotinic acid mononucleotide which, in turn, is converted to nicotinic acid adenine dinucleotide. Nicotinic acid adenine dinucleotide is then converted to nicotinamide adenine dinucleotide. If excess nicotinic acid is ingested, it is metabolized into a series of detoxification products (Fig. 4). Physiological metabohtes include /V-methylnicotinamide (19) and A/-methyl-6-pyridone-2-carboxamide (24) (1). [Pg.50]

Recently nicotinic acid has been found to lower serum cholesterol in hypercholesteremia, and also in normal persons and rabbits (A3, F2). It was shown that the hypercholesteremia, induced by a 48-hour fast, could be completely corrected by giving the animals large doses of nicotinic acid during the fast. In contrast to nicotinic acid, nicotinamide does not lower the cholesterol level (M10). Several explanations are offered for the action of nicotinic acid (1) it inhibits cholesterol biosynthesis, (2) it interferes with coenzyme A, and (3) it involves a hitherto unknown pharmacologic effect. The renewed clinical interest in nicotinic acid induced us to look for a more specific and sensitive assay for nicotinic acid (B7, M8). [Pg.200]

The biosynthesis and metabolism of nicotinic acid in disease has received little attention metabolic studies deal mainly with normal animals and man (01, R5). After a tryptophan load dose, the main catabolites in the urine are nicotinuric acid, N1-methylnicotinamide, nicotinamide, quinolinic acid, kynurenine, 6-pyridone, anthranilic acid, and 3-hydroxyanthranilic acid. These excretory products were estimated... [Pg.203]

NT437 Leete, E., and S. A. Slattery. Incorporation of (2- C) nicotinic acid into the tobacco alkaloids. Biosynthesis of anatabine and alpha, beta-dipyridyl. J Am Chem Soc 1976 98 6326. [Pg.362]

Several of the B vitamins function as coenzymes or as precursors of coenzymes some of these have been mentioned previously. Nicotinamide adenine dinucleotide (NAD) which, in conjunction with the enzyme alcohol dehydrogenase, oxidizes ethanol to ethanal (Section 15-6C), also is the oxidant in the citric acid cycle (Section 20-10B). The precursor to NAD is the B vitamin, niacin or nicotinic acid (Section 23-2). Riboflavin (vitamin B2) is a precursor of flavin adenine nucleotide FAD, a coenzyme in redox processes rather like NAD (Section 15-6C). Another example of a coenzyme is pyri-doxal (vitamin B6), mentioned in connection with the deamination and decarboxylation of amino acids (Section 25-5C). Yet another is coenzyme A (CoASH), which is essential for metabolism and biosynthesis (Sections 18-8F, 20-10B, and 30-5A). [Pg.1267]

Dawson, R. F., Christman, D. R., D adamo, A., Solt, M. L. and Wolf, A. P. 1960. Biosynthesis of nicotine from nicotinic acid chemistry and radiochemical yield. Arch. Biochem. Biophys. 9, 144-150... [Pg.192]

The Rutaceae oxazoles are evidently derived from /V-nicotinoyl-p-(p-hydroxy)-phenylethylamide (51), with the exception of balsoxin (25) and texamine (26) in which the nicotinoyl moiety is replaced by benzoyl. The condensation of these tyramine and nicotinic acid residues does not represent any major departure from the standard routes of alkaloid biosynthesis in the Rutaceae, for it has long been recognized that the alkaloids of this family are all derived from either phenylalanine (52), tyrosine, (53), or anthranilic acid (54) (22), the latter being the acknowledged precursor to nicotinic acid in most organisms (23). The formation of the putative oxazole precursor 51 or its equivalent therefore constitutes a convergence of the two predominant modes of alkaloid biosynthesis in the family. [Pg.267]

It is clear from Equation (19.4) that saturated fat, not cholesterol, is the single most important factor that raises serum cholesterol. Some cases of hyperlipoproteinemia type IV (high VLDL) respond to low-carbohydrate diets, because the excess of VLDL comes from intestinal cells, where it is produced from dietary carbohydrate. Resins, such as cholestyramine and cholestipol, bind and cause the excretion of bile salts, forcing the organism to use more cholesterol. Lovastatin decreases endogenous cholesterol biosynthesis (see later), and niacin (nicotinic acid) apparently decreases the production of VLDL and, consequently, LDL. It also results in an HDL increase. Antioxidants that inhibit the conversion of LDL to oxidized LDL have also been used with some success. These are high doses of vitamin E and the drug probucol. [Pg.506]

The first committed step in TA and nicotine biosynthesis is catalyzed by putrescine JV-methyltransferase (PMT) (Fig.7.4).82 A PMT cDNA isolated from tobacco showed extensive homology to spermidine synthase from mammalian and bacterial sources.83 A-Methylputrescine is oxidatively deaminated to 4-aminobutanal, which undergoes spontaneous cyclization to form the reactive A-methyl-A1-pyrrolinium cation. Although the enzymes involved are unknown, the A-methyl-A1-pyrrolinium cation is thought to condense either with acetoacetic acid to yield hygrine as a precursor to the tropane ring, or with nicotinic acid to form nicotine. [Pg.152]

The rather similar alkaloids anabasine and anatabine come from different biosynthetic pathways. Labelling experiments outlined below show the origin of one carbon atom from lysine and others from nicotinic acid. Suggest detailed pathways. (Hint. Nicotinic acid and the intermediate yoi have been using in Problem 3 in the biosynthesis of the piperidine alkaloid are both electrophilic at position 2. You also need an intermediate derived from nicotinic acid which is nucleophilic at position 3. The biosynthesis involves reduction.)... [Pg.1448]

Nicotine biosynthesis also involves the incorporation of nicotinic acid (Fig. 2.2) (Robins et al., 1987), and the availability of this moiety can be as important in nicotine accumulation as that of the putrescine-derived portion. However, the enz)une responsible for the condensation of N-methylpyrrolinium with decarboxylated nicotinic acid, nicotine s)mthase (Friesen and Leete, 1990), was measured at only a very low level of activity, quite inadequate to account for the rates of nicotine accumulation observed in cultures. The molecular analysis of low-nicotine mutants of N. tabacum suggested the presence of regulatory genes (Me 1 and Me 2) governing the expression of nicotine bios)mthesis (Hibi et al, 1994). [Pg.26]

Tryptophan quite clearly follows different metabolic routes. Our studies have been devoted to the pathway that, proceeding through the formation of kynurenine (an amino acid but no longer an indole) to the biosynthesis of nicotinic acid, explains the formation of the various intermediates. Kynurenine is the key substance in this process. [Pg.63]

The labelling and the hints given in the problem suggest an outline biosynthesis in which two molecules of nicotinic acid, one made nucleophilic by reduction, combine to give anatabine whilst the iminium salt we made in the last problem is attacked by the same nucleophilic derivative of nicotinic acid to give anabasine. [Pg.490]


See other pages where Nicotinic acid, biosynthesis is mentioned: [Pg.246]    [Pg.446]    [Pg.239]    [Pg.104]    [Pg.246]    [Pg.446]    [Pg.239]    [Pg.104]    [Pg.673]    [Pg.539]    [Pg.258]    [Pg.315]    [Pg.673]    [Pg.291]    [Pg.2]    [Pg.235]    [Pg.1]    [Pg.2]    [Pg.646]    [Pg.539]    [Pg.812]    [Pg.168]    [Pg.121]    [Pg.190]    [Pg.442]    [Pg.185]    [Pg.264]   
See also in sourсe #XX -- [ Pg.109 ]

See also in sourсe #XX -- [ Pg.154 ]




SEARCH



Nicotine biosynthesis

Nicotine nicotinic acid

Nicotinic acid

© 2024 chempedia.info