Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nickel reaction mechanism

The reaction mechanism and rates of methyl acetate carbonylation are not fully understood. In the nickel-cataly2ed reaction, rate constants for formation of methyl acetate from methanol, formation of dimethyl ether, and carbonylation of dimethyl ether have been reported, as well as their sensitivity to partial pressure of the reactants (32). For the rhodium chloride [10049-07-7] cataly2ed reaction, methyl acetate carbonylation is considered to go through formation of ethyUdene diacetate (33) ... [Pg.77]

Because of the delay in decomposition of the peroxide, oxygen evolution follows carbon dioxide sorption. A catalyst is required to obtain total decomposition of the peroxides 2 wt % nickel sulfate often is used. The temperature of the bed is the controlling variable 204°C is required to produce the best decomposition rates (18). The reaction mechanism for sodium peroxide is the same as for lithium peroxide, ie, both carbon dioxide and moisture are required to generate oxygen. Sodium peroxide has been used extensively in breathing apparatus. [Pg.487]

Although the actual reaction mechanism of hydrosilation is not very clear, it is very well established that the important variables include the catalyst type and concentration, structure of the olefinic compound, reaction temperature and the solvent. used 1,4, J). Chloroplatinic acid (H2PtCl6 6 H20) is the most frequently used catalyst, usually in the form of a solution in isopropyl alcohol mixed with a polar solvent, such as diglyme or tetrahydrofuran S2). Other catalysts include rhodium, palladium, ruthenium, nickel and cobalt complexes as well as various organic peroxides, UV and y radiation. The efficiency of the catalyst used usually depends on many factors, including ligands on the platinum, the type and nature of the silane (or siloxane) and the olefinic compound used. For example in the chloroplatinic acid catalyzed hydrosilation of olefinic compounds, the reactivity is often observed to be proportional to the electron density on the alkene. Steric hindrance usually decreases the rate of... [Pg.14]

The exact mechanisms of the Raney nickel reactions are still in doubt, though they are probably of the free radical type. It has been shown that reduction of thiophene proceeds through butadiene and butene, not through 1-butanethiol or other sulfur compounds, that is, the sulfur is removed before the double bonds are reduced. This was demonstrated by isolation of the alkenes and the failure to isolate any potential sulfur-containing intermediates. [Pg.532]

In a word, POM and OCM reactions proceed at different active sites with different reaction intermediates and reaction mechanisms over the nickel-based catalysts proposed as follows ... [Pg.461]

However, there is evidence that reactions of aluminium hydride produced in situ involve single-electron-transfer (SET) processesThe reactions described by Trost and Ghadiri have most likely not been studied in sufficient detail to permit an adequate description of the reaction mechanism to be given at this stage. It is, however, quite likely that the Grignard reactions catalyzed by copper(II) and nickel(II) complexes , as developed by julia - and by Masaki , do involve SET processes, although, if this is so, the preservation of stereochemistry in some of the examples described by these workers is quite remarkable. (In this context, the reader s attention is drawn to Reference 196, end of this section.)... [Pg.957]

Low-valent nickel complexes of bpy are also efficient electrocatalysts in the reductive coupling reaction of aromatic halides.207 Detailed investigations are in agreement with a reaction mechanism involving the oxidative addition (Equation (40)) of the organic halide to a zero valent complex.208-210 Starting from [Nin(bpy)2(X)2]0 with excess bpy, or from [Nin(bpy)3]2 +, results in the [Ni°(bpy)2]° complex (Equations (37) and (38)). However, the reactive complex is the... [Pg.485]

The electrochemistry of cobalt-salen complexes in the presence of alkyl halides has been studied thoroughly.252,263-266 The reaction mechanism is similar to that for the nickel complexes, with the intermediate formation of an alkylcobalt(III) complex. Co -salen reacts with 1,8-diiodo-octane to afford an alkyl-bridged bis[Co" (salen)] complex.267 Electrosynthetic applications of the cobalt-salen catalyst are homo- and heterocoupling reactions with mixtures of alkylchlorides and bromides,268 conversion of benzal chloride to stilbene with the intermediate formation of l,2-dichloro-l,2-diphenylethane,269 reductive coupling of bromoalkanes with an activated alkenes,270 or carboxylation of benzylic and allylic chlorides by C02.271,272 Efficient electroreduc-tive dimerization of benzyl bromide to bibenzyl is catalyzed by the dicobalt complex (15).273 The proposed mechanism involves an intermediate bis[alkylcobalt(III)] complex. [Pg.488]

It is true, however, that many catalytic reactions cannot be studied conveniently, under given conditions, with usual adsorption calorimeters of the isoperibol type, either because the catalyst is a poor heat-conducting material or because the reaction rate is too low. The use of heat-flow calorimeters, as has been shown in the previous sections of this article, does not present such limitations, and for this reason, these calorimeters are particularly suitable not only for the study of adsorption processes but also for more complete investigations of reaction mechanisms at the surface of oxides or oxide-supported metals. The aim of this section is therefore to present a comprehensive picture of the possibilities and limitations of heat-flow calorimetry in heterogeneous catalysis. The use of Calvet microcalorimeters in the study of a particular system (the oxidation of carbon monoxide at the surface of divided nickel oxides) has moreover been reviewed in a recent article of this series (19). [Pg.238]

Cathodic stripping voltammetry has been used [807] to determine lead, cadmium, copper, zinc, uranium, vanadium, molybdenum, nickel, and cobalt in water, with great sensitivity and specificity, allowing study of metal specia-tion directly in the unaltered sample. The technique used preconcentration of the metal at a higher oxidation state by adsorption of certain surface-active complexes, after which its concentration was determined by reduction. The reaction mechanisms, effect of variation of the adsorption potential, maximal adsorption capacity of the hanging mercury drop electrode, and possible interferences are discussed. [Pg.277]

Concerning the possible reaction mechanism, the activated lithium can both reduce the nickel(II) salt to give nickel(O) and react with the crystallization water present in the metallic salt to produce molecular hydrogen. However, no gas evolution was observed in the reaction, so the hydrogen initially formed was probably adsorbed on the surface of the active nickel to perform like hydrogenation without hydrogen in the sense that no external source of molecular hydrogen was employed. [Pg.732]

To date, no computational evidence has been presented to support these reaction mechanisms. Moreover, monomeric nickel vinylidene complexes have not been characterized outside of matrix isolation [37]. Given the unique properties of disilacyclobutenes, the significance of this work in the context of metal vinyli-dene-mediated catalysis remains to be established. [Pg.303]


See other pages where Nickel reaction mechanism is mentioned: [Pg.42]    [Pg.1149]    [Pg.1084]    [Pg.722]    [Pg.285]    [Pg.957]    [Pg.941]    [Pg.453]    [Pg.459]    [Pg.462]    [Pg.284]    [Pg.112]    [Pg.198]    [Pg.200]    [Pg.99]    [Pg.308]    [Pg.33]    [Pg.137]    [Pg.24]    [Pg.251]    [Pg.502]    [Pg.510]    [Pg.550]    [Pg.759]    [Pg.22]    [Pg.110]    [Pg.338]    [Pg.87]    [Pg.159]    [Pg.145]    [Pg.146]    [Pg.176]    [Pg.147]    [Pg.39]    [Pg.255]    [Pg.68]   
See also in sourсe #XX -- [ Pg.295 ]




SEARCH



Reaction nickel

© 2024 chempedia.info