Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neurotransmitter receptors. See

Data are from Refs. 29,30, and 35. The four compounds with the highest affinity for each receptor are highlighted in bold type. For a more completeand up-to-date summary of drug interactions with neurotransmitter receptors see http //pdsp.cwry. edu/pdsp.asp. [Pg.495]

The aim of this chapter is to consider the structure, distribution and functional properties of neurotransmitter receptors in the brain in general and discuss the principles of how the action of drugs at these receptors can be studied. (See relevant Chapters for detail of individual NT receptors.)... [Pg.57]

Opiates produce more discreet inhibitory effects since they bind to and activate inhibitory opioid receptors which, due to their restricted distribution, cause less widespread effects than those of the barbiturates and alcohol. Activation of the opioid receptors leads to a decrease in release of other neurotransmitters (glutamate, NA, DA, 5-HT, ACh, many peptides, etc.) and direct hyperpolarisation of cells by opening of K+ channels and decreasing Ca + channel activity via predominant actions on the mu opiate receptor (see Chapter 12). [Pg.504]

The family of heterotrimeric G proteins is involved in transmembrane signaling in the nervous system, with certain exceptions. The exceptions are instances of synaptic transmission mediated via receptors that contain intrinsic enzymatic activity, such as tyrosine kinase or guanylyl cyclase, or via receptors that form ion channels (see Ch. 10). Heterotrimeric G proteins were first identified, named and characterized by Alfred Gilman, Martin Rodbell and others close to 20 years ago. They consist of three distinct subunits, a, (3 and y. These proteins couple the activation of diverse types of plasmalemma receptor to a variety of intracellular processes. In fact, most types of neurotransmitter and peptide hormone receptor, as well as many cytokine and chemokine receptors, fall into a superfamily of structurally related molecules, termed G-protein-coupled receptors. These receptors are named for the role of G proteins in mediating the varied biological effects of the receptors (see Ch. 10). Consequently, numerous effector proteins are influenced by these heterotrimeric G proteins ion channels adenylyl cyclase phosphodiesterase (PDE) phosphoinositide-specific phospholipase C (PI-PLC), which catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) and phospholipase A2 (PLA2), which catalyzes the hydrolysis of membrane phospholipids to yield arachidonic acid. In addition, these G proteins have been implicated in... [Pg.335]

G proteins regulate intracellular concentrations of second messengers. G proteins control intracellular cAMP concentrations by mediating the ability of neurotransmitters to activate or inhibit adenylyl cyclase. The mechanism by which neurotransmitters stimulate adenylyl cyclase is well known. Activation of those neurotransmitter receptors that couple to Gs results in the generation of free G(IS subunits, which bind to and thus directly activate adenylyl cyclase. In addition, free Py-subunit complexes activate certain subtypes of adenylyl cyclase (see Ch. 21). A similar mechanism appears to be the case for G(IO f, a type of G protein structurally related to G that is enriched in olfactory epithelium and striatum (Ch. 50). [Pg.338]

Figure 17.1. Neurotransmission (specific case of peptidergic cells). Production of the peptides in the cel I body (1). Packing of the peptides i nto large dense core vesicles for further transport to the axons (2). Release of neuropeptides from the cell soma (3) dendrites (4) and outside of the synapse (5). Release of classic neurotransmitters in the synaptic cleft (6). G-protein-coupled type receptors, which act as peptide receptors. (See color insert.)... Figure 17.1. Neurotransmission (specific case of peptidergic cells). Production of the peptides in the cel I body (1). Packing of the peptides i nto large dense core vesicles for further transport to the axons (2). Release of neuropeptides from the cell soma (3) dendrites (4) and outside of the synapse (5). Release of classic neurotransmitters in the synaptic cleft (6). G-protein-coupled type receptors, which act as peptide receptors. (See color insert.)...
Figure 14.10 Diagrammatic representation of regulation of the opening of an ion channel by phosphoiylation of a protein in the channel. The neurotransmitter-receptor complex functions as a nucleotide exchange factor to activate a G-protein which then activates a protein kinase. This is identical to control of G-proteins in the action of hormones (Chapter 12, see Figure 12.21). Phosphorylation of a protein in the ion channel opens it to allow movement of Na+ ions. The formation of the complex, activation of the G-protein and the kinase takes place on the postsynaptic membrane. An example of the structural organisation and the involvement of a G-protein is shown in Chapter 12 (Figure 12.6). Figure 14.10 Diagrammatic representation of regulation of the opening of an ion channel by phosphoiylation of a protein in the channel. The neurotransmitter-receptor complex functions as a nucleotide exchange factor to activate a G-protein which then activates a protein kinase. This is identical to control of G-proteins in the action of hormones (Chapter 12, see Figure 12.21). Phosphorylation of a protein in the ion channel opens it to allow movement of Na+ ions. The formation of the complex, activation of the G-protein and the kinase takes place on the postsynaptic membrane. An example of the structural organisation and the involvement of a G-protein is shown in Chapter 12 (Figure 12.6).
Muscle contraction is triggered by motor neurons that release the neurotransmitter acetylcholine (see p. 352). The transmitter diffuses through the narrow synaptic cleft and binds to nicotinic acetylcholine receptors on the plasma membrane of the muscle cell (the sarcolemma), thereby opening the ion channels integrated into the receptors (see p. 222). This leads to an inflow of Na which triggers an action potential (see p. 350) in the sarcolemma. The action potential propagates from the end plate in all directions and constantly stimulates the muscle fiber. With a delay of a few milliseconds, the contractile mechanism responds to this by contracting the muscle fiber. [Pg.334]

Ion channels (center). These receptors contain ligand-gated ion channels. Binding of the signaling substance opens the channels for ions such as Na, Ca, and Cl . This mechanism is mainly used by neurotransmitters such as acetylcholine (nicotinic receptor see p.224) and GABA (A receptor see p.354). [Pg.384]

Dopamine is a naturally occurring catecholamine it is the immediate biochemical precursor of the norepinephrine found in adrenergic neurons and the adrenal medulla. It is also a neurotransmitter in the CNS, where it is released from dopaminergic neurons to act on spe-cihc dopamine receptors (see Chapter 31). [Pg.103]

Once the electrical signal has arrived at a chemical synapse (see Fig 4.2) a cascade of events is triggered with the arrival of an electrical impulse (an action potential), a chemical compound known as a neurotransmitter is released from the presynaptic side into the synaptic cleft. The released neurotransmitter then reaches the membrane of the second cell (postsynaptic membrane) where it interacts with a macromolecule, a so-called receptor. It is this neurotransmitter receptor interaction that triggers another cascade of (chemical) reactions within the second cell and this ultimately leads to the generation of an electrical signal within this cell. This signal then is transferred along this second cell s axon towards another synapse. [Pg.103]


See other pages where Neurotransmitter receptors. See is mentioned: [Pg.66]    [Pg.95]    [Pg.126]    [Pg.66]    [Pg.95]    [Pg.126]    [Pg.517]    [Pg.156]    [Pg.193]    [Pg.1120]    [Pg.38]    [Pg.209]    [Pg.98]    [Pg.221]    [Pg.298]    [Pg.298]    [Pg.338]    [Pg.381]    [Pg.392]    [Pg.395]    [Pg.576]    [Pg.576]    [Pg.671]    [Pg.856]    [Pg.877]    [Pg.108]    [Pg.80]    [Pg.243]    [Pg.29]    [Pg.145]    [Pg.145]    [Pg.267]    [Pg.414]    [Pg.10]    [Pg.452]   


SEARCH



Neurotransmitters receptors

© 2024 chempedia.info