Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Neural network hidden neurons

In neural network design, the above parameters have no precise number/answers because it is dependent on the particular application. However, the question is worth addressing. In general, the more patterns and the fewer hidden neurons to be used, the better the network. It should be realized that there is a subtle relationship between the number of patterns and the number of hidden layer neurons. Having too few patterns or too many hidden neurons can cause the network to memorize. When memorization occurs, the network would perform well during training, but tests poorly with a new data set. [Pg.9]

The specific volumes of all the nine siloxanes were predicted as a function of temperature and the number of monofunctional units, M, and difunctional units, D. A simple 3-4-1 neural network architecture with just one hidden layer was used. The three input nodes were for the number of M groups, the number of D groups, and the temperature. The hidden layer had four neurons. The predicted variable was the specific volumes of the silox-... [Pg.11]

Figure 6 Schematic of a typical neural network training process. I-input layer H-hidden layer 0-output layer B-bias neuron. Figure 6 Schematic of a typical neural network training process. I-input layer H-hidden layer 0-output layer B-bias neuron.
Kolmogorov s Theorem (Reformulated by Hecht-Nielson) Any real-valued continuous function f defined on an N-dimensional cube can be implemented by a three layered neural network consisting of 2N -)-1 neurons in the hidden layer with transfer functions from the input to the hidden layer and (f> from all of... [Pg.549]

Aqueous solubility is selected to demonstrate the E-state application in QSPR studies. Huuskonen et al. modeled the aqueous solubihty of 734 diverse organic compounds with multiple linear regression (MLR) and artificial neural network (ANN) approaches [27]. The set of structural descriptors comprised 31 E-state atomic indices, and three indicator variables for pyridine, ahphatic hydrocarbons and aromatic hydrocarbons, respectively. The dataset of734 chemicals was divided into a training set ( =675), a vahdation set (n=38) and a test set (n=21). A comparison of the MLR results (training, r =0.94, s=0.58 vahdation r =0.84, s=0.67 test, r =0.80, s=0.87) and the ANN results (training, r =0.96, s=0.51 vahdation r =0.85, s=0.62 tesL r =0.84, s=0.75) indicates a smah improvement for the neural network model with five hidden neurons. These QSPR models may be used for a fast and rehable computahon of the aqueous solubihty for diverse orgarhc compounds. [Pg.93]

Each set of mathematical operations in a neural network is called a layer, and the mathematical operations in each layer are called neurons. A simple layer neural network might take an unknown spectrum and pass it through a two-layer network where the first layer, called a hidden layer, computes a basis function from the distances of the unknown to each reference signature spectrum, and the second layer, called an output layer, that combines the basis functions into a final score for the unknown sample. [Pg.156]

A feedforward neural network brings together several of these little processors in a layered structure (Figure 9). The network in Figure 9 is fully connected, which means that every neuron in one layer is connected to every neuron in the next layer. The first layer actually does no processing it merely distributes the inputs to a hidden layer of neurons. These neurons process the input, and then pass the result of their computation on to the output layer. If there is a second hidden layer, the process is repeated until the output layer is reached. [Pg.370]

Artificial neural networks (ANN) are computing tools made up of simple, interconnected processing elements called neurons. The neurons are arranged in layers. The feed-forward network consists of an input layer, one or more hidden layers, and an output layer. ANNs are known to be well suited for assimilating knowledge about complex processes if they are properly subjected to input-output patterns about the process. [Pg.36]

In order to develop an ANN model for the FCC process, we use here the same data set as in the previous section (Section 2.4). This data set was divided into two sets, one set for training and one set for testing the neural network. The prepared network model is able to predict the yields of the various FCC products and also the CCR number. During training of the neural network, first, only one hidden layer with five neurons was used. This network did not perform well against a pre-specified tolerance of 10-3. [Pg.37]

A feedforward neural network consisting of 31 hidden and one output neuron was generated 97% inhibitors and 95% non-inhibitors of the training set were predicted correctly 36 inhibitors and 36 non-inhibitors of a test set, which have not been used to generate the model, were predicted with 91.7% accuracy for inhibitors and 88.9% for non-inhibitor. [Pg.487]

It is worth comparing briefly the PLS (Chapter 4) and ANN models. The ANN selected finally uses four neurons in the hidden layer, which is exactly the same number of latent variables as selected for PLS, a situation reported fairly frequently when PLS and ANN models perform similarly. The RMSBC and RMSBP were slightly higher for PLS, 1.4 and L5pgmU respectively, and they were outperformed by the ANN (0.7 and 0.5pgnil respectively). The best predictive capabilities of the neural network might be attributed to the presence of some sort of spectral nonlinearities in the calibration set and/or some spectral behaviour not easy to account for by the PLS linear models. [Pg.269]

Typically, a neural network consists of three layers of neurons, input, hidden and output layers, and of information flow channels between the neurons called interconnects (Figure 33). [Pg.303]

Figure 8.2 A motor neuron (a) and small artificial neural network (b). A neuron collects signals from other neurons via its dendrites. If the neuron is sufficiently activated, it sends a signal to other neurons via its axon. Artificial neural network are often grouped into layers. Data is entered through the input layer. It is processed by the neurons of the hidden layer and then fed to the neurons of the output layer. (Illustration of motor neuron from Life ART Collection Images 1989-2001 by Lippincott Williams Wilkins used by permission from SmartDraw.com.)... Figure 8.2 A motor neuron (a) and small artificial neural network (b). A neuron collects signals from other neurons via its dendrites. If the neuron is sufficiently activated, it sends a signal to other neurons via its axon. Artificial neural network are often grouped into layers. Data is entered through the input layer. It is processed by the neurons of the hidden layer and then fed to the neurons of the output layer. (Illustration of motor neuron from Life ART Collection Images 1989-2001 by Lippincott Williams Wilkins used by permission from SmartDraw.com.)...
Figure 8.4 Funt et al. (1996) transform the colors of the input image to rg-chromaticity space. The input layer of the neural network samples the triangular shaped region of the chromaticity space. The network consists of an input layer, a hidden layer, and an output layer. The two output neurons estimate the chromaticity of the illuminant. Figure 8.4 Funt et al. (1996) transform the colors of the input image to rg-chromaticity space. The input layer of the neural network samples the triangular shaped region of the chromaticity space. The network consists of an input layer, a hidden layer, and an output layer. The two output neurons estimate the chromaticity of the illuminant.
Neural networks are essentially non-linear regression models based on a binary threshold unit (McCulloch and Pitts, 1943). The structure of neural networks, called a perception, consists of a set of nodes at different layers where the node of a layer is linked with all the nodes of the next layer (Rosenblatt, 1962). The role of the input layer is to feed input patterns to intermediate layers (also called hidden layers) of units that are followed by an output result layer where the result of computation is read-off. Each one of these units is a neuron that computes a weighted sum of its inputs from other neurons at a previous layer, and outputs a one or a zero according to whether the sum is above or below a... [Pg.175]


See other pages where Neural network hidden neurons is mentioned: [Pg.325]    [Pg.1318]    [Pg.454]    [Pg.500]    [Pg.3]    [Pg.450]    [Pg.481]    [Pg.660]    [Pg.662]    [Pg.379]    [Pg.370]    [Pg.378]    [Pg.380]    [Pg.527]    [Pg.535]    [Pg.37]    [Pg.180]    [Pg.257]    [Pg.266]    [Pg.303]    [Pg.305]    [Pg.104]    [Pg.193]    [Pg.735]    [Pg.760]    [Pg.157]    [Pg.24]    [Pg.176]    [Pg.369]    [Pg.360]    [Pg.34]    [Pg.35]    [Pg.173]    [Pg.179]    [Pg.191]   
See also in sourсe #XX -- [ Pg.54 ]




SEARCH



Hidden

Hidden neurons

Neural network

Neural networking

Neuronal network

© 2024 chempedia.info