Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiphase flows, enthalpy

Other conservation equations (enthalpy and species) for multiphase flows can be written following a similar general format. For example, the enthalpy conservation equation is written ... [Pg.107]

The additional sink is added to the usual conservation equations corrected for the volume fraction of the porous media. The governing equations look similar to those for Eulerian multiphase flow processes (Section 4.2.2) except that the volume fraction of the porous medium is not a variable. In the enthalpy equation, it is possible to include influence of porous media by considering an effective thermal conductivity, fceff, of the form ... [Pg.113]

Several interesting observations relate to such thermodynamic measurements. For example, the exothermic effects, associated with phase separation in LCST-type polymer blends, showed a correlation between the exothermic enthalpy and the interactions between the components (Natansohn 1985) however, the specific interaction parameter xn was not calculated. In another example, there are definitive correlations between the thermodynamic and the transport properties (see Chap. 7, Rheology of Polymer Alloys and Blends ). Thermodynamic properties of multiphase polymeric systems affect the flow, and vice versa. As discussed in Chap. 7, Rheology of Polymer Alloys and Blends , the effects of stress can engender significant shift of the spinodal temperature, AT = 16 °C. While at low stresses the effects can vary, i.e., the miscibility can either increase or decrease. [Pg.255]

What is the minimum number of variables to specify fully a stream A stream can be defined as the flow of material between two units in a flowsheet. The variables normally associated with a stream are its temperature, pressure, total flow, overall mole fractions, phase fractions and phase mole fractions, total enthalpy, phase enthalpies, entropy, etc. Assuming phase and chemical equilibrium, how many of those variables must be specified to completely fix the stream Without further considerations, for this case, intuition gives us the correct answer. We know without writing equations that if we specify temperature, pressure, and individual component flows, the stream is fully specified. Of course, a priori we cannot know the final state of the stream (i.e., multiphase or single phase liquid, vapor, solid, or a mixture of them). If we are interested in a stream with some specific conditions like saturated liquid, we cannot specify simultaneously pressure and temperature but pressure (or temperature) and phase fraction. A convention in process simulators is that when vapor (liquid) phase fraction is specified to zero or one, saturated conditions are assumed (bubble point or dew point). However, when vapor or liquid phase fractions are calculated, a value of one (zero) does not mean saturated conditions but that the stream is in vapor (liquid) phase. [Pg.306]


See other pages where Multiphase flows, enthalpy is mentioned: [Pg.215]    [Pg.484]    [Pg.123]    [Pg.522]   


SEARCH



Enthalpy flow

Multiphase flows

© 2024 chempedia.info