Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Multiblock sequences, living polymerization

True block copolymers containing long blocks of each homopolymer in a diblock, triblock, or multiblock sequence are formed by simultaneous polymerization of the two monomers when n > 1 and r2 8> 1. However, block copolymers are prepared more effectively by either sequential monomer addition in living polymerizations, or by coupling two or more telechelic homopolymers subsequent to their homopolymerization. Alternatively, if the two monomers do not polymerize by the same mechanism, a block copolymer can still be formed by sequential monomer addition if the active site of the first block is transformed to a reactive center capable of initiating polymerization of the second monomer. [Pg.18]

In the formation of block copolymers by sequential addition of monomers it generally does not matter which monomer is polymerized first, and diblock or multiblock copolymers of narrow MWD and of any desired sequence length are readily prepared. Termination is usually effected by reaction of the living ends with aldehydes ketones can be used for terminating titanacyclobutane ends, while unsaturated ethers are used for terminating ruthenium carbene complexes. [Pg.1586]

The order of monomer addition is important. For example, to prepare an AB type block copolymer of styrene and methyl methacrylate, st ene must be polymerized first using a monofunctional initiator and when styrene is completely reacted, the other monomer MMA must be added. The copolymer would not form if MMA were polymerized first, because living poly(methyl methacrylate) is not basic enough to add to styrene. The length of each block is determined by the amount of corresponding monomer which was provided. To produce ABA type copolymer by monofunctional initiation, B can be added when A is consumed, and A added again when B is consumed. This procedure is possible if the anion of each monomer sequence can initiate polymerization of the other monomer. Multiblock copolymers can also be made in this way. [Pg.700]


See other pages where Multiblock sequences, living polymerization is mentioned: [Pg.109]    [Pg.119]    [Pg.143]    [Pg.643]    [Pg.347]    [Pg.445]    [Pg.107]    [Pg.108]    [Pg.97]   
See also in sourсe #XX -- [ Pg.3 , Pg.172 ]

See also in sourсe #XX -- [ Pg.3 , Pg.172 ]




SEARCH



Living polymerization

Multiblock

© 2024 chempedia.info