Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Monochromators for

Infrared instruments using a monochromator for wavelength selection are constructed using double-beam optics similar to that shown in Figure 10.26. Doublebeam optics are preferred over single-beam optics because the sources and detectors for infrared radiation are less stable than that for UV/Vis radiation. In addition, it is easier to correct for the absorption of infrared radiation by atmospheric CO2 and 1420 vapor when using double-beam optics. Resolutions of 1-3 cm are typical for most instruments. [Pg.393]

Quartz also has modest but important uses in optical appHcations, primarily as prisms. Its dispersion makes it useful in monochromators for spectrophotometers in the region of 0.16—3.5 m. Specially prepared optical-quality synthetic quartz is requited because ordinary synthetic quartz is usually not of good enough quality for such uses, mainly owing to scattering and absorption at 2.6 p.m associated with hydroxide in the lattice. [Pg.521]

A dispersive element for spectral analysis of PL. This may be as simple as a filter, but it is usually a scanning grating monochromator. For excitation spectroscopy or in the presence of much scattered light, a double or triple monochromator (as used in Raman scattering) may be required. [Pg.383]

Some commercial spectrophotometers have fluorescence attachments which allow the sample to be irradiated from an ancillary source and the resulting fluoresence to pass through the monochromator for spectral analysis. [Pg.734]

The irradiating X-ray beam cannot be focussed upon and scanned across the specimen surface as is possible with an electron beam. Practical methods of small-spot XPS imaging rely on restriction of the source size or the analysed area. By using a focussing crystal monochromator for the X-rays, beam sizes of less than 10 pm may be achieved. This must in turn correspond with the acceptance area and alignment on the sample of the electron spectrometer, which involves the use of an electron lens of low aberration. The practically achievable spatial resolution is rarely better than 100 pm. A spatial resolution value of 200 pm might be regarded as typical, and it must also be remembered that areas of up to several millimetres in diameter can readily be analysed. [Pg.31]

Monochromators for dispersing X-radiation utilize single crystals which behave like a diffraction grating. The spacing of the crystal lattice determines the angles at which radiation is reflected and generally two or more different crystals are required to cover the X-ray region of the spectrum. [Pg.280]

The LS-3B is a fluorescence spectrometer with separate scanning monochromators for excitation and emission, and digital displays of both monochromator wavelengths and signal intensity. The LS-5B is a ratioing luminescence spectrometer with the capability of measuring fluorescence, phosphorescence and bio- and chemiluminescence. Delay time (t) and gate width (t) are variable via the keypad in lOps intervals. It corrects excitation and emission spectra. [Pg.29]

Labtam Plasma Scan 8440 Simultaneous (polychromator or with optional monochromator for sequential) 60-70... [Pg.41]

There is more than one spectral line in the line spectrum of an element and therefore more than one line to choose from when setting the monochromator. For each element, there is one line that gives the optimum absorptivity for that element, and this line is therefore the most sensitive and useful. This line... [Pg.254]

FIGURE 9.20 An illustration of the optical path for an ICP instrument that utilizes a monochromator for the sequential measurement of spectral lines. [Pg.264]

Despite the measurement of the emitted radiation by these means it is still possible for scattered or reflected incident radiation to reach the detector. To prevent this, fluorimeters require a second monochromating system between the sample and the detector. Many simple fluorimeters use filters as both primary and secondary monochromators but those instruments that use true optical monochromators for both components are known as spectrofluo-rimeters. Other instruments incorporate a simple cut-off filter system for the emitted radiation while retaining the optical monochromator for the excitation radiation. Because the wavelengths of both excitation and emission are characteristic of the molecule, it is debatable which monochromator is the most important in the design of a fluorimeter. [Pg.74]

Figure 12.1 shows the classic L-format of the most commonly used fluorescence spectrometer configuration which is topologically the same for the measurement of both steady-state spectra and lifetimes. The source and detector options of relevance to IR fluorescence measurements are discussed in Sections 12.3 and 12.4, respectively. The other optical components comprised of the lenses for focusing and collection and monochromators for wavelength selection contain few peculiarities in the near-IR as... [Pg.378]

The XAS spectrometer is similar to a UV-visible system in that it consists of a source, a monochromator, and a detector. The most favorable XAS source, synchrotron radiation, is tunable to different wavelengths of desirable high intensity. A laboratory instrument for analysis of solids and concentrated solutions may use a rotating anode source (further described in Section 3.3). The monochromator for X-ray radiation usually consists of silicon single crystals. The crystals can be rotated so that the wavelength ( i) of the X-rays produced depends of the angle of incidence (0) with a Bragg lattice plane of... [Pg.79]

E.A. DeThomas and P.J. Brimmer, Monochromators for near-infrared spectroscopy, in Handbook of Vibrational Spectroscopy, J.M. Chalmers and PR. Griffiths (eds), vol 1, John Wiley Sons, New York, 2002. [Pg.154]

Describe the factors which cause broadening of spectral lines. In atomic absorption spectrometry, why is it preferable for the source line-width to be narrower than the absorption profile How can this be achieved What are the differing requirements for resolution in monochromators for atomic emission and for atomic absorption spectrometry ... [Pg.157]

DeThomas, F.A. and Brimmer, P.J., Monochromators for Near-Infrared Spectroscopy. In Chalmers, J.M. and Griffiths, P.R. (eds), Handbook of Vibrational Spectroscopy, vol 1 John Wiley 8c Sons New York, 2002, pp. 383-392. [Pg.90]


See other pages where Monochromators for is mentioned: [Pg.1199]    [Pg.389]    [Pg.424]    [Pg.443]    [Pg.312]    [Pg.281]    [Pg.217]    [Pg.224]    [Pg.439]    [Pg.163]    [Pg.236]    [Pg.10]    [Pg.808]    [Pg.295]    [Pg.69]    [Pg.511]    [Pg.161]    [Pg.250]    [Pg.80]    [Pg.67]    [Pg.37]    [Pg.43]    [Pg.120]    [Pg.73]    [Pg.79]    [Pg.320]    [Pg.104]    [Pg.281]    [Pg.406]    [Pg.54]    [Pg.156]    [Pg.53]    [Pg.63]   
See also in sourсe #XX -- [ Pg.280 ]




SEARCH



Monochromate

Monochromator

Monochromators

Monochromic

© 2024 chempedia.info