Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molybdenum heterogeneous

The tert-huty hydroperoxide is then mixed with a catalyst solution to react with propylene. Some TBHP decomposes to TBA during this process step. The catalyst is typically an organometaHic that is soluble in the reaction mixture. The metal can be tungsten, vanadium, or molybdenum. Molybdenum complexes with naphthenates or carboxylates provide the best combination of selectivity and reactivity. Catalyst concentrations of 200—500 ppm in a solution of 55% TBHP and 45% TBA are typically used when water content is less than 0.5 wt %. The homogeneous metal catalyst must be removed from solution for disposal or recycle (137,157). Although heterogeneous catalysts can be employed, elution of some of the metal, particularly molybdenum, from the support surface occurs (158). References 159 and 160 discuss possible mechanisms for the catalytic epoxidation of olefins by hydroperoxides. [Pg.138]

EBHP is mixed with a catalyst solution and fed to a horizontal compartmentalized reactor where propylene is introduced into each compartment. The reactor operates at 95—130°C and 2500—4000 kPa (360—580 psi) for 1—2 h, and 5—7 mol propylene/1 mol EBHP are used for a 95—99% conversion of EBHP and a 92—96% selectivity to propylene oxide. The homogeneous catalyst is made from molybdenum, tungsten, or titanium and an organic acid, such as acetate, naphthenate, stearate, etc (170,173). Heterogeneous catalysts consist of titanium oxides on a siUca support (174—176). [Pg.140]

It is carried out in the Hquid phase at 100—130°C and catalyzed by a soluble molybdenum naphthenate catalyst, also in a series of reactors with interreactor coolers. The dehydration of a-phenylethanol to styrene takes place over an acidic catalyst at about 225°C. A commercial plant (50,51) was commissioned in Spain in 1973 by Halcon International in a joint venture with Enpetrol based on these reactions, in a process that became known as the Oxirane process, owned by Oxirane Corporation, a joint venture of ARCO and Halcon International. Oxirane Corporation merged into ARCO in 1980 and this process is now generally known as the ARCO process. It is used by ARCO at its Channelview, Texas, plant and in Japan and Korea in joint ventures with local companies. A similar process was developed by Shell (52—55) and commercialized in 1979 at its Moerdijk plant in the Netherlands. The Shell process uses a heterogeneous catalyst of titanium oxide on siHca support in the epoxidation step. Another plant by Shell is under constmction in Singapore (ca 1996). [Pg.484]

Low pressure (0.1 to 20 MPa) and temperatures of 50 to 300°C using heterogeneous catalysts such as molybdenum oxide or chromium oxide supported on inorganic carriers to produce high density polyethylene (HDPE), which is more linear in nature, with densities of 0.94 to 0.97 g/cm. ... [Pg.432]

Partially Crystalline Transition Metal Sulphide Catalysts. Chiannelli and coworkers (6, 7, 8) have shown how, by precipitation of metal thio-molybdates from solution and subsequent mild heat-treatment many selective and active hydrodesulphurization catalysts may be produced. We have shown (18) recently that molybdenum sulphide formed in this way is both structurally and compositionally heterogeneous. XRES, which yields directly the variation in Mo/S ratio shows up the compositional nonuniformity of typical preparations and HREM images coupled to SAED (see Figure 2) exhibit considerable spatial variation, there being amorphous regions at one extreme and highly crystalline (18, 19) MoS at the other. [Pg.429]

Figure 2. These high-resolution micrographs show how a so-called x-ray amorphous, nonstoichiometric molybdenum sulfide catalyst exhibits structural (as well as compositional) heterogeneity. Amorphous, quasi-crystalline, and crystalline regions coexist at the ultramicro level (18,). Figure 2. These high-resolution micrographs show how a so-called x-ray amorphous, nonstoichiometric molybdenum sulfide catalyst exhibits structural (as well as compositional) heterogeneity. Amorphous, quasi-crystalline, and crystalline regions coexist at the ultramicro level (18,).
Molecular catalysis. The term molecular catalysis is used for catalytic systems where identical molecular species are the catalytic entity, like the molybdenum complex in Figure 8.1, and also large molecules such as enzymes. Many molecular catalysts are used as homogeneous catalysts (see (5) below), but can also be used in multiphase (heterogeneous) systems, such as those involving attachment of molecular entities to polymers. [Pg.178]

Catalysts are heterogeneous sulfided nickel (or cobalt) molybdenum compounds on a y-alumina. The reaction has been extensively studied with substrates such as thiophene (Figure 2.40) as the model compound mainly with the aims of improving the catalyst performance. The mechanism on the molecular level has not been established. In recent years the reaction has also attracted the interest of organometallic chemists who have tried to contribute to the mechanism by studying the reactions of organometallic complexes with thiophene [41], Many possible co-ordination modes for thiophene have been described. [Pg.55]

Studies on heterogeneous catalysts seem to invoke partial hydrogenation of thiophene prior to desulfurization [42] the catalysts are also active hydrogenation catalysts. Recently evidence for a facile and selective desulfurisation of partly hydrogenated thiophene has been reported, the reaction of 2,5-dihydrothiophene on (110) molybdenum surfaces (Figure 2.41) [43]. [Pg.55]

I4M. Misono, Heterogeneous Catalysis by Heteropoly Compounds of Molybdenum and Tungsten, Catalysis Reviews, 29,269-321 (1987). [Pg.167]

Dauphas N, Marty B, Reisberg L (2002b) Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys J 565 640-644. [Pg.452]

One type of the constituent metallocenters in the MoFe protein has the properties of a somewhat independent structural entity. This component, referred to as the FeMo cofactor (FeMo-co), was first identified by Shah and Brill (1977) as the stable metallocluster extracted from acid-denatured MoFe protein. The FeMo-co was able to fully activate a defective protein in the extracts of mutant strain UW45, a protein which subsequently was shown to contain the P clusters but not the EPR-active center. The isolated cofactor accounted for the total S = t system observed by EPR and Mdssbauer spectroscopies of the holo-MoFe protein (Rawlings et al., 1978). Elemental analysis indicated a composition of Mo Fee-8 Se-g for the cofactor, which, if there are two FeMo-co s per a2 2> accounts for all the molybdenum and approximately half the iron in active enzyme (Nelson etai, 1983). Although FeMo-co has been extensively studied [reviewed in Burgess (1990)] the structure remains enigmatic. To date, all attempts to crystallize the cofactor have failed. This is possibly due to the instability and resultant heterogeneity of the cofactor when removed from the protein. Also, there is a paucity of appropriate models for spectral comparison (see Coucouvanis, 1991, for a recent discussion). Final resolution of this elusive structure may require its determination as a component of the holoprotein. [Pg.260]

The oxidation of ethanol to acetic acid was among the first heterogeneous catalyzed reactions to be reported, but it has not attracted continued interest. During the 1990ies, however, 100% conversion of ethanol coupled with 100% selectivity to acetic acid was reported in a gas-phase reaction using molybdenum oxide catalytic systems on various supports, at temperatures below 250 Similarly, a tin oxide and molybdenum oxide catalyst was... [Pg.31]

The search for a new epoxidation method that would be appropriate for organic synthesis should also, preferably, opt for a catalytic process. Industry has shown the way. It resorts to catalysis for epoxidations of olefins into key intermediates, such as ethylene oxide and propylene oxide. The former is prepared from ethylene and dioxygen with silver oxide supported on alumina as the catalyst, at 270°C (15-16). The latter is prepared from propylene and an alkyl hydroperoxide, with homogeneous catalysis by molybdenum comp e ts( 17) or better (with respect both to conversion and to selectivity) with an heterogeneous Ti(IV) catalyst (18), Mixtures of ethylene and propylene can be epoxidized too (19) by ten-butylhydroperoxide (20) (hereafter referred to as TBHP). [Pg.318]


See other pages where Molybdenum heterogeneous is mentioned: [Pg.474]    [Pg.224]    [Pg.1211]    [Pg.197]    [Pg.141]    [Pg.369]    [Pg.247]    [Pg.826]    [Pg.376]    [Pg.126]    [Pg.137]    [Pg.178]    [Pg.224]    [Pg.464]    [Pg.120]    [Pg.262]    [Pg.300]    [Pg.337]    [Pg.338]    [Pg.165]    [Pg.145]    [Pg.196]    [Pg.130]    [Pg.435]    [Pg.582]    [Pg.426]    [Pg.427]    [Pg.428]    [Pg.428]    [Pg.428]    [Pg.432]    [Pg.545]    [Pg.154]    [Pg.154]    [Pg.575]    [Pg.2]   
See also in sourсe #XX -- [ Pg.136 , Pg.139 ]




SEARCH



Molybdenum catalysts, heterogeneous

Molybdenum heterogenization

Molybdenum heterogenization

© 2024 chempedia.info