Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular systems background

Here the ijk coordinate system represents the laboratory reference frame the primed coordinate system i j k corresponds to coordinates in the molecular system. The quantities Tj, are the matrices describing the coordinate transfomiation between the molecular and laboratory systems. In this relationship, we have neglected local-field effects and expressed the in a fomi equivalent to simnning the molecular response over all the molecules in a unit surface area (with surface density N. (For simplicity, we have omitted any contribution to not attributable to the dipolar response of the molecules. In many cases, however, it is important to measure and account for the background nonlinear response not arising from the dipolar contributions from the molecules of interest.) In equation B 1.5.44, we allow for a distribution of molecular orientations and have denoted by () the corresponding ensemble average ... [Pg.1290]

The scattering of neutrons by any molecular system can be elastic or inelastic, coherent or incoherent. The elastic coherent scattering of a labeled polymer in a background matrix can be extracted from the data in a properly designed experiment. [Pg.258]

Wigner rotation/adiabatic-to-diabatic transformation matrices, 92 Electronic structure theory, electron nuclear dynamics (END) structure and properties, 326-327 theoretical background, 324-325 time-dependent variational principle (TDVP), general nuclear dynamics, 334-337 Electronic wave function, permutational symmetry, 680-682 Electron nuclear dynamics (END) degenerate states chemistry, xii-xiii direct molecular dynamics, structure and properties, 327 molecular systems, 337-351 final-state analysis, 342-349 intramolecular electron transfer,... [Pg.76]

Infinite-order sudden approximation (IOSA), electron nuclear dynamics (END), molecular systems, 345-349 Initial relaxation direction (IRD), direct molecular dynamics, theoretical background, 359-361 Inorganic compounds, loop construction, photochemical reactions, 481-482 In-phase states ... [Pg.82]

Jahn-Teller effect (Continued) theoretical background, 41-44 topological spin insertion, 70-73 two-state molecular system, 58-59 permutational symmetry ... [Pg.83]

In this chapter, we briefly discuss the theoretical background of polarized x-ray absorption spectroscopy (PXAS). Many of the recent applications of synchrotron radiation to polarized absorption edge structure and to EXAFS are discussed, with particular emphasis being given to the study of discrete molecular systems. We present here some indication of the potential applications of PXAS to systems of chemical and biological interest. [Pg.413]

The quantum theory of the previous chapter may well appear to be of limited relevance to chemistry. As a matter of fact, nothing that pertains to either chemical reactivity or interaction has emerged. Only background material has been developed and the quantum behaviour of real chemical systems remains to be explored. If quantum theory is to elucidate chemical effects it should go beyond an analysis of atomic hydrogen. It should deal with all types of atom, molecules and ions, explain their interaction with each other and predict the course of chemical reactions as a function of environmental factors. It is not the same as providing the classical models of chemistry with a quantum-mechanical gloss a theme not without some common-sense appeal, but destined to obscure the non-classical features of molecular systems. [Pg.261]

The various methods used in quantum chemistry make it possible to compute equilibrium intermolecular distances, to describe intermolecular forces and chemical reactions too. The usual way to calculate these properties is based on the independent particle model this is the Hartree-Fock method. The expansion of one-electron wave-functions (molecular orbitals) in practice requires technical work on computers. It was believed for years and years that ab initio computations will become a routine task even for large molecules. In spite of the enormous increase and development in computer technique, however, this expectation has not been fulfilled. The treatment of large, extended molecular systems still needs special theoretical background. In other words, some approximations should be used in the methods which describe the properties of molecules of large size and/or interacting systems. The further approximations are to be chosen carefully this caution is especially important when going beyond the HF level. The inclusion of the electron correlation in the calculations in a convenient way is still one of the most significant tasks of quantum chemistry. [Pg.41]

The spectral line shape in CARS spectroscopy is described by Equation (6.14). In order to investigate an unknown sample, one needs to extract the imaginary part of to be able to compare it with the known spontaneous Raman spectrum. To do so, one has to determine the phase of the resonant contribution with respect to the nonreso-nant one. This is a well-known problem of phase retrieval, which has been discussed in detail elsewhere (Lucarini et al. 2005). The basic idea is to use the whole CARS spectrum and the fact that the nonresonant background is approximately constant. The latter assumption is justihed if there are no two-photon resonances in the molecular system (Akhmanov and Koroteev 1981). There are several approaches to retrieve the unknown phase (Lucarini et al. 2005), but the majority of those techniques are based on an iterative procedure, which often converges only for simple spectra and negligible noise. When dealing with real experimental data, such iterative procedures often fail to reproduce the spectroscopic data obtained by some other means. [Pg.150]


See other pages where Molecular systems background is mentioned: [Pg.267]    [Pg.47]    [Pg.267]    [Pg.67]    [Pg.69]    [Pg.73]    [Pg.75]    [Pg.76]    [Pg.78]    [Pg.78]    [Pg.94]    [Pg.97]    [Pg.99]    [Pg.104]    [Pg.335]    [Pg.310]    [Pg.24]    [Pg.446]    [Pg.292]    [Pg.163]    [Pg.195]    [Pg.414]    [Pg.538]    [Pg.24]    [Pg.413]    [Pg.364]    [Pg.125]   
See also in sourсe #XX -- [ Pg.379 , Pg.380 , Pg.381 , Pg.382 , Pg.383 ]




SEARCH



Molecular background

Molecular systems, theoretical background

© 2024 chempedia.info