Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular system potential energy

Molecular dynamics consists of the brute-force solution of Newton s equations of motion. It is necessary to encode in the program the potential energy and force law of interaction between molecules the equations of motion are solved numerically, by finite difference techniques. The system evolution corresponds closely to what happens in real life and allows us to calculate dynamical properties, as well as thennodynamic and structural fiinctions. For a range of molecular models, packaged routines are available, either connnercially or tlirough the academic conmuinity. [Pg.2241]

The full dynamical treatment of electrons and nuclei together in a laboratory system of coordinates is computationally intensive and difficult. However, the availability of multiprocessor computers and detailed attention to the development of efficient software, such as ENDyne, which can be maintained and debugged continually when new features are added, make END a viable alternative among methods for the study of molecular processes. Eurthemiore, when the application of END is compared to the total effort of accurate determination of relevant potential energy surfaces and nonadiabatic coupling terms, faithful analytical fitting and interpolation of the common pointwise representation of surfaces and coupling terms, and the solution of the coupled dynamical equations in a suitable internal coordinates, the computational effort of END is competitive. [Pg.233]

In this chapter, we look at the techniques known as direct, or on-the-fly, molecular dynamics and their application to non-adiabatic processes in photochemistry. In contrast to standard techniques that require a predefined potential energy surface (PES) over which the nuclei move, the PES is provided here by explicit evaluation of the electronic wave function for the states of interest. This makes the method very general and powerful, particularly for the study of polyatomic systems where the calculation of a multidimensional potential function is an impossible task. For a recent review of standard non-adiabatic dynamics methods using analytical PES functions see [1]. [Pg.251]

The full quantum mechanical study of nuclear dynamics in molecules has received considerable attention in recent years. An important example of such developments is the work carried out on the prototypical systems H3 [1-5] and its isotopic variant HD2 [5-8], Li3 [9-12], Na3 [13,14], and HO2 [15-18], In particular, for the alkali metal trimers, the possibility of a conical intersection between the two lowest doublet potential energy surfaces introduces a complication that makes their theoretical study fairly challenging. Thus, alkali metal trimers have recently emerged as ideal systems to study molecular vibronic dynamics, especially the so-called geometric phase (GP) effect [13,19,20] (often referred to as the molecular Aharonov-Bohm effect [19] or Berry s phase effect [21]) for further discussion on this topic see [22-25], and references cited therein. The same features also turn out to be present in the case of HO2, and their exact treatment assumes even further complexity [18],... [Pg.552]

Additionally, as in all Tl-based approaches, the free energy differences are linear functions of the potential. Thus non-rigorous decompositions may be made into contributions from the different potential energy terms, parts of system and individual coordinates, providing valuable insight into the molecular mechanisms of studied processes [8, 9, 10). [Pg.166]

How can we apply molecular dynamics simulations practically. This section gives a brief outline of a typical MD scenario. Imagine that you are interested in the response of a protein to changes in the amino add sequence, i.e., to point mutations. In this case, it is appropriate to divide the analysis into a static and a dynamic part. What we need first is a reference system, because it is advisable to base the interpretation of the calculated data on changes compared with other simulations. By taking this relative point of view, one hopes that possible errors introduced due to the assumptions and simplifications within the potential energy function may cancel out. All kinds of simulations, analyses, etc., should always be carried out for the reference and the model systems, applying the same simulation protocols. [Pg.369]

A typical molecular dynamics simulation comprises an equflibration and a production phase. The former is necessary, as the name imphes, to ensure that the system is in equilibrium before data acquisition starts. It is useful to check the time evolution of several simulation parameters such as temperature (which is directly connected to the kinetic energy), potential energy, total energy, density (when periodic boundary conditions with constant pressure are apphed), and their root-mean-square deviations. Having these and other variables constant at the end of the equilibration phase is the prerequisite for the statistically meaningful sampling of data in the following production phase. [Pg.369]

A Fortran90 library for the simulation of molecular systems using molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM)/ MM) potential energy functions. http //www.ibs.fr/ext/labos/LDM/projet6/... [Pg.400]


See other pages where Molecular system potential energy is mentioned: [Pg.1038]    [Pg.370]    [Pg.1038]    [Pg.370]    [Pg.167]    [Pg.78]    [Pg.205]    [Pg.3]    [Pg.18]    [Pg.21]    [Pg.352]    [Pg.27]    [Pg.109]    [Pg.665]    [Pg.105]    [Pg.634]    [Pg.372]    [Pg.2]    [Pg.36]    [Pg.235]    [Pg.190]    [Pg.2059]    [Pg.2997]    [Pg.3]    [Pg.98]    [Pg.100]    [Pg.220]    [Pg.223]    [Pg.400]    [Pg.588]    [Pg.636]    [Pg.768]    [Pg.770]    [Pg.771]    [Pg.7]    [Pg.311]    [Pg.472]    [Pg.499]    [Pg.349]    [Pg.353]    [Pg.361]    [Pg.362]    [Pg.368]   
See also in sourсe #XX -- [ Pg.10 ]




SEARCH



Molecular energies

Molecular potential

Molecular potential energy

Potential energy surfaces molecular systems

© 2024 chempedia.info