Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular structure, dynamic foams

Surfactants play an important role in the formation and stability of foams. Investigators have determined foam stability by measuring the half-life (e.g. t 2) the foam. Half-life is the time required to reduce foam voLume to half of its initial value. It has been demonstrated that the foam stability (i.e.half-life) decreased with increasing temperature, whereas the foaminess of the surfactant solution increased with temperature. It is likely that these properties of foam depend on the molecular structure and concentration of the surfactant at the gas/liquid interface. Comparison of the results of static foam stability with that of the dynamic behavior of foam in porous media revealed that the foam stability is not required for efficient fluid displacement or a decrease in the effective air mc >ility in a porous medium. Moreover, the ability of the surfactants to produce in-situ foam was one of the important factors in the displacement of the fluid in a porous medium. [Pg.236]

A situation that commonly occurs with food foams and emulsions is that there is a mixture of protein and low-molecular-weight surfactant available for adsorption at the interface. The composition and structure of the developing adsorbed layer are therefore strongly influenced by dynamic aspects of the competitive adsorption between protein and surfactant. This competitive adsorption in turn is influenced by the nature of the interfacial protein-protein and protein-surfactant interactions. At the most basic level, what drives this competition is that the surfactant-surface interaction is stronger than the interaction of the surface with the protein (or protein-surfactant complex) (Dickinson, 1998 Goff, 1997 Rodriguez Patino et al., 2007 Miller et al., 2008 Kotsmar et al., 2009). [Pg.324]

The stability of suspensions containing solid particles are treated in the framework of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which accounts for the electrostatic and van der Waals interactions between the particles (Verwey and Overbeek 1948, Derjaguin 1989). In the past decades it has been shown that other types of inter-particle forces may also play an important role in the stability of dispersions - hydrodynamic interactions, hydration and hydrophobic forces, steric and depletion forces, oscillatory structural forces, etc. The hydrodynamic and molecular interactions between surfaces of drops and bubbles in emulsion and foam systems (compared to that of suspensions of solid particles) are more complex due to the particles fluidity and deformability. These two features and the possible thin film formation between the colliding particles have a great impact on the hydrodynamic interactions, the magnitude of the disjoining pressure and on the dynamic and thermodynamic stability of such systems (Ivanov and Dimitrov 1988, Danov et al. 2001, Kralchevsky et al. 2002). [Pg.2]

An interdisciplinary team of leading experts from around the world discuss recent concepts in the physics and chemistry of various well-studied interfaces of rigid and deformable particles in homo- and hetero-aggregate dispersed systems, including emulsions, dispersoids, foams, fluosols, polymer membranes, and biocolloids. The contributors clearly elucidate the hydrodynamic, electrodynamic, and thermodynamic instabilities that occur at interfaces, as well as the rheological properties of interfacial layers responsible for droplets, particles, and droplet-particle-film structures in finely dispersed systems. The book examines structure and dynamics from various angles, such as relativistic and non-relativistic theories, molecular orbital methods, and transient state theories. [Pg.913]


See other pages where Molecular structure, dynamic foams is mentioned: [Pg.181]    [Pg.144]    [Pg.147]    [Pg.258]    [Pg.376]    [Pg.444]    [Pg.31]    [Pg.502]    [Pg.5]    [Pg.756]    [Pg.6041]    [Pg.285]    [Pg.171]    [Pg.18]    [Pg.326]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Foam structure

Foamed structure

Molecular structure dynamic

Structural dynamics

Structural foams

Structure dynamics

© 2024 chempedia.info