Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular semi-empirical

A very recent overview, including efforts to interface semi-empirical electronic structure with molecular mechanics treatments of some degrees of freedom is given by ... [Pg.2201]

Thiel W 1996 Perspectives on semiempirical molecular orbital theory New Methods in Computationai Quantum Meohanios (Adv. Chem. Phys. XCiti) ed I Prigogine I and S A Rice (New York Wiley) pp 703-57 Earlier texts dealing with semi-empirical methods include ... [Pg.2201]

The first point to remark is that methods that are to be incorporated in MD, and thus require frequent updates, must be both accurate and efficient. It is likely that only semi-empirical and density functional (DFT) methods are suitable for embedding. Semi-empirical methods include MO (molecular orbital) [90] and valence-bond methods [89], both being dependent on suitable parametrizations that can be validated by high-level ab initio QM. The quality of DFT has improved recently by refinements of the exchange density functional to such an extent that its accuracy rivals that of the best ab initio calculations [91]. DFT is quite suitable for embedding into a classical environment [92]. Therefore DFT is expected to have the best potential for future incorporation in embedded QM/MD. [Pg.15]

Molecular orbitals were one of the first molecular features that could be visualized with simple graphical hardware. The reason for this early representation is found in the complex theory of quantum chemistry. Basically, a structure is more attractive and easier to understand when orbitals are displayed, rather than numerical orbital coefficients. The molecular orbitals, calculated by semi-empirical or ab initio quantum mechanical methods, are represented by isosurfaces, corresponding to the electron density surfeces Figure 2-125a). [Pg.135]

The theoretical methods used commonly can be divided into three main categories, semi-empirical MO theory, DFT and ab-initio MO theory. Although it is no longer applied often, Hiickel molecular orbital (HMO) theory will be employed to introduce some of the principles used by the more modem techniques. [Pg.376]

All the techniques described above can be used to calculate molecular structures and energies. Which other properties are important for chemoinformatics Most applications have used semi-empirical theory to calculate properties or descriptors, but ab-initio and DFT are equally applicable. In the following, we describe some typical properties and descriptors that have been used in quantitative structure-activity (QSAR) and structure-property (QSPR) relationships. [Pg.390]

Molecular dipole moments are often used as descriptors in QPSR models. They are calculated reliably by most quantum mechanical techniques, not least because they are part of the parameterization data for semi-empirical MO techniques. Higher multipole moments are especially easily available from semi-empirical calculations using the natural atomic orbital-point charge (NAO-PC) technique [40], but can also be calculated rehably using ab-initio or DFT methods. They have been used for some QSPR models. [Pg.392]

The molecular electronic polarizability is one of the most important descriptors used in QSPR models. Paradoxically, although it is an electronic property, it is often easier to calculate the polarizability by an additive method (see Section 7.1) than quantum mechanically. Ah-initio and DFT methods need very large basis sets before they give accurate polarizabilities. Accurate molecular polarizabilities are available from semi-empirical MO calculations very easily using a modified version of a simple variational technique proposed by Rivail and co-workers [41]. The molecular electronic polarizability correlates quite strongly with the molecular volume, although there are many cases where both descriptors are useful in QSPR models. [Pg.392]

The MEP at the molecular surface has been used for many QSAR and QSPR applications. Quantum mechanically calculated MEPs are more detailed and accurate at the important areas of the surface than those derived from net atomic charges and are therefore usually preferable [Ij. However, any of the techniques based on MEPs calculated from net atomic charges can be used for full quantum mechanical calculations, and vice versa. The best-known descriptors based on the statistics of the MEP at the molecular surface are those introduced by Murray and Politzer [44]. These were originally formulated for DFT calculations using an isodensity surface. They have also been used very extensively with semi-empirical MO techniques and solvent-accessible surfaces [1, 2]. The charged polar surface area (CPSA) descriptors proposed by Stanton and Jurs [45] are also based on charges derived from semi-empirical MO calculations. [Pg.393]

For many applications, especially studies on enzyme reaction mechanisms, we do not need to treat the entire system quantum mechanically. It is often sufficient to treat the center of interest (e.g., the active site and the reacting molecules) quantum mechanically. The rest of the molecule can be treated using classical molecular mechanics (MM see Section 7.2). The quantum mechanical technique can be ab-initio, DFT or semi-empirical. Many such techniques have been proposed and have been reviewed and classified by Thiel and co-workers [50] Two effects of the MM environment must be incorporated into the quantum mechanical system. [Pg.395]

A descriptor for the 3D arrangement of atoms in a molceulc can be derived in a similar manner. The Cartesian coordinates of the atoms in a molecule can be calculated by semi-empirical quantum mechanical or molecular mechanics (force field) methods, For larger data sets, fast 3D structure generators are available that combine data- and rule-driven methods to calculate Cartesian coordinates from the connection table of a molecule (e.g., CORINA [10]). [Pg.517]

Presell is the basic theory of tjuaiiHim mechanics, particularly, semi-empirical molecular orbital theory. The authors detail and justify the approximations inherent in the semi-empirical Ham illoTi ian s. Includes useful discussion s of th e appiicaliori s of these methods to specific research problems. [Pg.4]

Parameters for elements (basis liinctions in ah miiw methods usually derived from experimental data and empirical parameters in semi-empirical methods nsually obtained from empirical data or ah initu> calcii la lion s) are in depen den t of th e ch em -leal environment, [n contrast, parameters used in molecular mechanics methods often depend on the chem ical en viron-ment. [Pg.33]

Sin glc-poiri t, georn ctry oplim i/ation, molecular dynam ies an d vibration calctilalioti s are all available with either ah initio or semi-empirical SCf methods.. After obtain in g a wavefiincLion via any of... [Pg.120]

HyperChem should not he viewed as a black box that computes on ly wb at its design ers th ougb L correct, tthasan open architecture that makes it possible to customize it many ways. As far as is possible, the parameters of molecular mechanics and semi-empir-ieal calculations are in the user s baruis. As the tech n ic ues of software engineering advance and onr expertise in building new... [Pg.157]

For small molecules, the accuracy of solutions to the Schrtidinger equation competes with the accuracy of experimental results. However, these accurate a i initw calculations require enormous com putation an d are on ly suitable for the molecular system s with small or medium size. Ah initio calculations for very large molecules are beyond the realm of current computers, so HyperChern also supports sern i-em p irical quantum meclian ics m eth ods. Sem i-em pirical approximate solutions are appropriate and allow extensive cliem ical exploration, Th e in accuracy of the approxirn ation s made in semi-empirical methods is offset to a degree by recourse to experimental data in defining the parameters of the method. [Pg.217]

Most simple empirical or semi-empirical molecular orbital methods. including all ofthose ii sed in IlyperCh em, neglect inner sh ell orbitals and electrons and use a minimal basis se.i r>f valence Slater orbitals. [Pg.269]

Schaeffer H F III (Editor) 1977. Applications of Electronic Structure Theory. New York, Plenum Press. Schaeffer H F III (Editor) 1977. Methods of Electronic Structure Theory. New York, Plenum Press. Stei. art J J P 1990. MOP AC A Semi-Empirical Molecular Orbital Program. Journal of Computer-Aided Molecular Design 4 1-45. [Pg.125]

Stewart)) P1990. Semi-empirical Molecular Orbital Methods. In Lipkowitz K B and D B Boyd (Editors). [Pg.125]

Kurst G R, R A Stephens and R W Phippen 1990. Computer Simulation Studies of Anisotropic iystems XIX. Mesophases Formed by the Gay-Berne Model Mesogen. Liquid Crystals 8 451-464. e F J, F Has and M Orozco 1990. Comparative Study of the Molecular Electrostatic Potential Ibtained from Different Wavefunctions - Reliability of the Semi-Empirical MNDO Wavefunction. oumal of Computational Chemistry 11 416-430. [Pg.268]


See other pages where Molecular semi-empirical is mentioned: [Pg.4]    [Pg.434]    [Pg.376]    [Pg.381]    [Pg.381]    [Pg.384]    [Pg.389]    [Pg.393]    [Pg.395]    [Pg.3]    [Pg.4]    [Pg.107]    [Pg.124]    [Pg.128]    [Pg.164]    [Pg.246]    [Pg.250]    [Pg.267]    [Pg.331]    [Pg.11]    [Pg.28]    [Pg.46]    [Pg.85]    [Pg.106]    [Pg.119]    [Pg.131]    [Pg.183]    [Pg.251]    [Pg.288]   
See also in sourсe #XX -- [ Pg.381 ]




SEARCH



Molecular modelling semi-empirical methods

Molecular orbital theories, semi-empirical

Molecular orbital theory semi-empirical methods

Molecular quantum theory, semi-empirical

Molecular structure semi-empirical approach

Semi-empirical

Semi-empirical methods molecular orbitals

Semi-empirical molecular models

Semi-empirical molecular orbital

Semi-empirical molecular orbital calculations

Semi-empirical molecular orbital methods

Semi-empirical molecular statistical

Semi-empirical molecular statistical theory

Subject semi-empirical molecular

© 2024 chempedia.info