Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular organic frameworks

The search for better catalysts has been facilitated in recent years by molecular modeling. We are seeing here a step change. This is the subject of Chapter 1 (Molecular Catalytic Kinetics Concepts). New types of catalysts appeared to be more selective and active than conventional ones. Tuned mesoporous catalysts, gold catalysts, and metal organic frameworks (MOFs) that are discussed in Chapter 2 (Hierarchical Porous Zeolites by Demetallation, 3 (Preparation of Nanosized Gold Catalysts and Oxidation at Room Temperature), and 4 (The Fascinating Structure... [Pg.389]

Physisorption (i.e., adsorption of hydrogen) of molecular hydrogen by weak van der Waals forces to the inner surface of a highly porous material. Adsorption has been studied on various nanomaterials, e.g., nanocarbons, metal organic frameworks and polymers. [Pg.314]

The past nearly six decades have seen a chronological progression in molecular sieve materials from the aluminosilicate zeolites to microporous silica polymorphs, microporous aluminophosphate-based polymorphs, metallosilicate and metaHo-phosphate compositions, octahedral-tetrahedral frameworks, mesoporous molecular sieves and most recently hybrid metal organic frameworks (MOFs). A brief discussion of the historical progression is reviewed here. For a more detailed description prior to 2001 the reader is referred to [1]. The robustness of the field is evident from the fact that publications and patents are steadily increasing each year. [Pg.1]

Up to now, a variety of non-zeolite/polymer mixed-matrix membranes have been developed comprising either nonporous or porous non-zeolitic materials as the dispersed phase in the continuous polymer phase. For example, non-porous and porous silica nanoparticles, alumina, activated carbon, poly(ethylene glycol) impregnated activated carbon, carbon molecular sieves, Ti02 nanoparticles, layered materials, metal-organic frameworks and mesoporous molecular sieves have been studied as the dispersed non-zeolitic materials in the mixed-matrix membranes in the literature [23-35]. This chapter does not focus on these non-zeoUte/polymer mixed-matrix membranes. Instead we describe recent progress in molecular sieve/ polymer mixed-matrix membranes, as much of the research conducted to date on mixed-matrix membranes has focused on the combination of a dispersed zeolite phase with an easily processed continuous polymer matrix. The molecular sieve/ polymer mixed-matrix membranes covered in this chapter include zeolite/polymer and non-zeolitic molecular sieve/polymer mixed-matrix membranes, such as alu-minophosphate molecular sieve (AlPO)/polymer and silicoaluminophosphate molecular sieve (SAPO)/polymer mixed-matrix membranes. [Pg.333]

Type I isotherms are characteristic of microporous solids having relatively small external surface area (activated carbons, molecular sieve zeolites, metal organic frameworks, etc.). They are usually obtained by most gases and vapors on activated carbons. [Pg.117]

Whilst the development of new adsorbents on monolithic [62] or fibrous supports [63] to cut pressure drops, of high-capacity metal organic frameworks (MOFs) [64], or of highly selective molecularly imprinted polymers (MIPs) [65], is certainly beneficial for the realization of novel adsorptive reactive concepts, the serendipity of catalytic chemistry and the accompanying adsorption process remains the crucial factor for the success or otherwise of an adsorptive reactor. Thus, although a healthy degree of skepticism is appropriate when assessing the suitability of an adsorptive... [Pg.229]

Nanoporous materials like zeolites and related materials, mesoporous molecular sieves, clays, pillared clays, the majority of silica, alumina, active carbons, titanium dioxides, magnesium oxides, carbon nanotubes and metal-organic frameworks are the most widely studied and applied adsorbents. In the case of crystalline and ordered nanoporous materials such as zeolites and related materials, and mesoporous molecular sieves, their categorization as nanoporous materials are not debated. However, in the case of amorphous porous materials, they possess bigger pores together with pores sized less than 100 nm. Nevertheless, in the majority of cases, the nanoporous component is the most important part of the porosity. [Pg.275]

The search for new zeolite-like structures was initially extended to aluminophosphate-based molecular sieves,3 and these explorations produced a variety of exotic compounds with open-framework structures, which include besides metal phosphates,4 carboxylates,5 sulfates,6 selenites, and selenates.7 Growth of this area has been rapid in the past decade necessitating new editions of the Atlas of Zeolites.2 It is noteworthy that metal—organic framework (MOF) solids have been included as zeolite types in the latest edition of the Atlas of Zeolites. [Pg.357]


See other pages where Molecular organic frameworks is mentioned: [Pg.255]    [Pg.344]    [Pg.67]    [Pg.255]    [Pg.344]    [Pg.67]    [Pg.177]    [Pg.73]    [Pg.40]    [Pg.125]    [Pg.44]    [Pg.293]    [Pg.308]    [Pg.8]    [Pg.190]    [Pg.111]    [Pg.239]    [Pg.85]    [Pg.265]    [Pg.73]    [Pg.146]    [Pg.131]    [Pg.132]    [Pg.144]    [Pg.129]    [Pg.916]    [Pg.22]    [Pg.342]    [Pg.464]    [Pg.8]    [Pg.331]    [Pg.72]    [Pg.236]    [Pg.811]    [Pg.5]    [Pg.281]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Frameworks, molecular

Organic Frameworks

Organization molecular

© 2024 chempedia.info