Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular neutron scattering

Vibrational spectroscopy provides detailed infonnation on both structure and dynamics of molecular species. Infrared (IR) and Raman spectroscopy are the most connnonly used methods, and will be covered in detail in this chapter. There exist other methods to obtain vibrational spectra, but those are somewhat more specialized and used less often. They are discussed in other chapters, and include inelastic neutron scattering (INS), helium atom scattering, electron energy loss spectroscopy (EELS), photoelectron spectroscopy, among others. [Pg.1149]

Two of the most important functions in the application of neutron scattering are the use of deuterium labelling for the study of molecular confomiation in the bulk state and the use of deuterium solvent in polymer solutions. In the following, we will consider several different applications of die general fomuda to deuteration. [Pg.1412]

There are many different data analysis schemes to estimate the structure and molecular parameters of polymers from the neutron scattering data. Herein, we will present several connnon methods for characterizing the scattering profiles, depending only on the applicable q range. These methods, which were derived based on different assumptions, have... [Pg.1414]

The early Hartley model [2, 3] of a spherical micellar stmcture resulted, in later years, in some considerable debate. The self-consistency (inconsistency) of spherical symmetry witli molecular packing constraints was subsequently noted [4, 5 and 6]. There is now no serious question of tlie tenet tliat unswollen micelles may readily deviate from spherical geometry, and ellipsoidal geometries are now commonly reported. Many micelles are essentially spherical, however, as deduced from many light and neutron scattering studies. Even ellipsoidal objects will appear... [Pg.2586]

More recently, simulation studies focused on surface melting [198] and on the molecular-scale growth kinetics and its anisotropy at ice-water interfaces [199-204]. Essmann and Geiger [202] compared the simulated structure of vapor-deposited amorphous ice with neutron scattering data and found that the simulated structure is between the structures of high and low density amorphous ice. Nada and Furukawa [204] observed different growth mechanisms for different surfaces, namely layer-by-layer growth kinetics for the basal face and what the authors call a collected-molecule process for the prismatic system. [Pg.376]

Complementary to other methods that constimte a basis for the investigation of molecular dynamics (Raman scattering, infrared absorption, and neutron scattering), NIS is a site- and isotope-selective technique. It yields the partial density of vibrational states (PDOS). The word partial refers to the selection of molecular vibrations in which the Mossbauer isotope takes part. The first NIS measurements were performed in 1995 to constitute the method and to investigate the PDOS of... [Pg.516]

The prerequisite for an experimental test of a molecular model by quasi-elastic neutron scattering is the calculation of the dynamic structure factors resulting from it. As outlined in Section 2 two different correlation functions may be determined by means of neutron scattering. In the case of coherent scattering, all partial waves emanating from different scattering centers are capable of interference the Fourier transform of the pair-correlation function is measured Eq. (4a). In contrast, incoherent scattering, where the interferences from partial waves of different scatterers are destructive, measures the self-correlation function [Eq. (4b)]. [Pg.14]

How can one hope to extract the contributions of the different normal modes from the relaxation behavior of the dynamic structure factor The capability of neutron scattering to directly observe molecular motions on their natural time and length scale enables the determination of the mode contributions to the relaxation of S(Q, t). Different relaxation modes influence the scattering function in different Q-ranges. Since the dynamic structure factor is not simply broken down into a sum or product of more contributions, the Q-dependence is not easy to represent. In order to make the effects more transparent, we consider the maximum possible contribution of a given mode p to the relaxation of the dynamic structure factor. This maximum contribution is reached when the correlator in Eq. (32) has fallen to zero. For simplicity, we retain all the other relaxation modes = 1 for s p. [Pg.25]

Highly energetic compounds with potential use in explosive devices must be characterized completely and safely, particularly as the explosive character may be linked directly to vibrational modes in the molecular structure, hence the application of computational methods to complement experimental observations. ANTA 5 has been the subject of various studies and, as an adjunct to one of these and to confirm the results of an inelastic neutron scattering experiment, an isolated molecule calculation was carried out using the 6-311G basis set <2005CPL(403)329>. [Pg.161]

Supplementary to other vibrational spectroscopies, inelastic neutron scattering (INS) spectroscopy is a very useful technique for studying organic molecules as it is extremely sensitive to the vibrations of hydrogen atoms. INS spectroscopy has been used to analyze the molecular dynamics of the energetic compound ANTA 5 <2005CPL(403)329>. [Pg.164]


See other pages where Molecular neutron scattering is mentioned: [Pg.725]    [Pg.2553]    [Pg.2589]    [Pg.317]    [Pg.360]    [Pg.411]    [Pg.411]    [Pg.163]    [Pg.245]    [Pg.246]    [Pg.246]    [Pg.477]    [Pg.516]    [Pg.260]    [Pg.78]    [Pg.301]    [Pg.1]    [Pg.517]    [Pg.133]    [Pg.774]    [Pg.184]    [Pg.186]    [Pg.145]    [Pg.5]    [Pg.284]    [Pg.194]    [Pg.223]    [Pg.228]    [Pg.267]    [Pg.267]    [Pg.725]    [Pg.195]    [Pg.258]    [Pg.453]    [Pg.583]    [Pg.75]    [Pg.52]    [Pg.75]    [Pg.156]    [Pg.379]   
See also in sourсe #XX -- [ Pg.691 ]




SEARCH



Inelastic neutron scattering from molecular hydrogen trapped on surfaces

Molecular Dynamics Incoherent Neutron Scattering

Molecular inelastic neutron scattering

Molecular scattering

Neutron scattering

Neutron scattering molecular dynamics

Neutron scattering studies molecular reorientation

Techniques in neutron scattering studies of molecular systems

© 2024 chempedia.info