Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics simulation liquid

Key words Molecular dynamics simulation - Liquid dynamics... [Pg.105]

It is possible to use the quantum states to predict the electronic properties of the melt. A typical procedure is to implement molecular dynamics simulations for the liquid, which pemiit the wavefiinctions to be detemiined at each time step of the simulation. As an example, one can use the eigenpairs for a given atomic configuration to calculate the optical conductivity. The real part of tire conductivity can be expressed as... [Pg.133]

Figure Al.3.30. Theoretical frequency-dependent conductivity for GaAs and CdTe liquids from ab initio molecular dynamics simulations [42]. Figure Al.3.30. Theoretical frequency-dependent conductivity for GaAs and CdTe liquids from ab initio molecular dynamics simulations [42].
Progress in the theoretical description of reaction rates in solution of course correlates strongly with that in other theoretical disciplines, in particular those which have profited most from the enonnous advances in computing power such as quantum chemistry and equilibrium as well as non-equilibrium statistical mechanics of liquid solutions where Monte Carlo and molecular dynamics simulations in many cases have taken on the traditional role of experunents, as they allow the detailed investigation of the influence of intra- and intemiolecular potential parameters on the microscopic dynamics not accessible to measurements in the laboratory. No attempt, however, will be made here to address these areas in more than a cursory way, and the interested reader is referred to the corresponding chapters of the encyclopedia. [Pg.832]

Batista V S and Coker D F 1996 Nonadiabatic molecular dynamics simulation of photodissociation and geminate recombination of liquid xenon J. Chem. Phys. 105 4033-54... [Pg.865]

Wilson M R 1997 Molecular dynamics simulations of flexible liquid crystal molecules using a Gay-Berne/Lennard-Jones model J. Chem. Phys. 107 8654-63... [Pg.2280]

Postma, J.P.M., Berendsen, H.J.C., Straatsma, T.P. Intramolecular vibrations from molecular dynamics simulations of liquid water. Journal de Physique C7 (1984) 31-40. [Pg.30]

R. W. Pastor. Techniques and applications of Langevin dynamics simulations. In G. R. Luckhurst and C. A. Veracini, editors. The Molecular Dynamics of Liquid Crystals, pages 85-138. Kluwer Academic, Dordrecht, The Netherlands, 1994. [Pg.258]

An important though deman ding book. Topics include statistical mechanics, Monte Carlo sim illation s. et uilibrium and non -ec iiilibrium molecular dynamics, an aly sis of calculation al results, and applications of methods to problems in liquid dynamics. The authors also discuss and compare many algorithms used in force field simulations. Includes a microfiche containing dozens of Fortran-77 subroutines relevant to molecular dynamics and liquid simulations. [Pg.2]

TIte NCC water model. (After Corongiu G 1992. Molecular Dynamics Simulation fir Liquid Water Using risable and Flexible Potential. International Journal of Quantum Chemistry 42 1209-1235.)... [Pg.238]

Fig. 6.2 Radial distribution function determined from a lOOps molecular dynamics simulation of liquid argon at a temperature of 100K and a density of 1.396gcm. ... Fig. 6.2 Radial distribution function determined from a lOOps molecular dynamics simulation of liquid argon at a temperature of 100K and a density of 1.396gcm. ...
The correct treatment of boundaries and boundary effects is crucial to simulation methods because it enables macroscopic properties to be calculated from simulations using relatively small numbers of particles. The importance of boundary effects can be illustrated by considering the following simple example. Suppose we have a cube of volume 1 litre which is filled with water at room temperature. The cube contains approximately 3.3 X 10 molecules. Interactions with the walls can extend up to 10 molecular diameters into the fluid. The diameter of the water molecule is approximately 2.8 A and so the number of water molecules that are interacting with the boundary is about 2 x 10. So only about one in 1.5 million water molecules is influenced by interactions with the walls of the container. The number of particles in a Monte Carlo or molecular dynamics simulation is far fewer than 10 -10 and is frequently less than 1000. In a system of 1000 water molecules most, if not all of them, would be within the influence of the walls of the boundary. Clecirly, a simulation of 1000 water molecules in a vessel would not be an appropriate way to derive bulk properties. The alternative is to dispense with the container altogether. Now, approximately three-quarters of the molecules would be at the surface of the sample rather than being in the bulk. Such a situation would be relevcUit to studies of liquid drops, but not to studies of bulk phenomena. [Pg.331]

Fig. 7.12 Experimental and calculated infrared spectra for liquid water. The black dots are the experimental values. The thick curve is the classical profile produced by the molecular dynamics simulation. The thin curve is obtained by applying quantum corrections. (Figure redrawn from Guilbt B 1991. A Molecular Dynamics Study of the Infrared Spectrum of Water. Journal of Chemical Physics 95 1543-1551.)... Fig. 7.12 Experimental and calculated infrared spectra for liquid water. The black dots are the experimental values. The thick curve is the classical profile produced by the molecular dynamics simulation. The thin curve is obtained by applying quantum corrections. (Figure redrawn from Guilbt B 1991. A Molecular Dynamics Study of the Infrared Spectrum of Water. Journal of Chemical Physics 95 1543-1551.)...
Rothlisberger and M Parrinello 1997. Ab Initio Molecular Dynamics Simulation of Liquid Hydroge Fluoride. Journal of Chemical Physics 106 4658-4664. [Pg.653]

M. R. Philpott, J. N. Glosli. Molecular dynamics simulation of interfacial electrochemical processes electric double layer screening. In G. Jerkiewicz, M. P. Soriaga, K. Uosaki, A. Wieckowski, eds. Solid Liquid Electrochemical Interfaces, Vol. 656 of ACS Symposium Series. Washington ACS, 1997, Chap. 2, pp. 13-30. [Pg.381]

B. Smit. Molecular dynamics simulations of amphiphihc molecules at liquid-liquid interface. Phys Rev A 57 3431-36, 1988. [Pg.626]

J. D. Weeks, D. Chandler, H. C. Andersen. Role of repulsive forces in determining the equilibrium structure of simple liquids. J Chem Phys 54 5237, 1971. R. L. Rowley, M. W. Schuck, J. Perry. A direct method for determination of chemical potential with molecular dynamics simulations. 2. Mixtures. Mol Phys 55 125, 1995. [Pg.797]

AB INITIO MOLECULAR DYNAMICS SIMULATIONS OF LIQUID ALLOYS ... [Pg.277]

Using the first-principles molecular-dynamics simulation, Munejiri, Shimojo and Hoshino studied the structure of liquid sulfur at 400 K, below the polymerization temperature [79]. They found that some of the Ss ring molecules homolytically open up on excitation of one electron from the HOMO to the LUMO. The chain-like diradicals S " thus generated partly recombine intramolecularly with formation of a branched Sy=S species rather than cyclo-Ss- Furthermore, the authors showed that photo-induced polymerization occurs in liquid sulfur when the Ss chains or Sy=S species are close to each other at their end. The mechanism of polymerization of sulfur remains a challenging problem for further theoretical work. [Pg.15]

It is worth noting that much of the development work for the MM force fields has centred on low energy structures of molecules. Consequently, some of the force constants are less applicable to higher energy molecular structures that can occur in molecular dynamics simulations of liquid crystals. [Pg.44]

In contrast to the single molecule case, Monte Carlo methods tend to be rather less efficient than molecular dynamics in sampling phase space for a bulk fluid. Consequently, most of the bulk simulations of liquid crystals described in Sect. 5.1 use molecular dynamics simulation methods. [Pg.47]

The rapid rise in computer speed over recent years has led to atom-based simulations of liquid crystals becoming an important new area of research. Molecular mechanics and Monte Carlo studies of isolated liquid crystal molecules are now routine. However, care must be taken to model properly the influence of a nematic mean field if information about molecular structure in a mesophase is required. The current state-of-the-art consists of studies of (in the order of) 100 molecules in the bulk, in contact with a surface, or in a bilayer in contact with a solvent. Current simulation times can extend to around 10 ns and are sufficient to observe the growth of mesophases from an isotropic liquid. The results from a number of studies look very promising, and a wealth of structural and dynamic data now exists for bulk phases, monolayers and bilayers. Continued development of force fields for liquid crystals will be particularly important in the next few years, and particular emphasis must be placed on the development of all-atom force fields that are able to reproduce liquid phase densities for small molecules. Without these it will be difficult to obtain accurate phase transition temperatures. It will also be necessary to extend atomistic models to several thousand molecules to remove major system size effects which are present in all current work. This will be greatly facilitated by modern parallel simulation methods that allow molecular dynamics simulations to be carried out in parallel on multi-processor systems [115]. [Pg.61]

Tarek et al. [388] studied a system with some similarities to the work of Bocker et al. described earlier—a monolayer of n-tetradecyltrimethylammonium bromide. They also used explicit representations of the water molecules in a slab orientation, with the mono-layer on either side, in a molecular dynamics simulation. Their goal was to model more disordered, liquid states, so they chose two larger molecular areas, 0.45 and 0.67 nm molecule Density profiles normal to the interface were calculated and compared to neutron reflectivity data, with good agreement reported. The hydrocarbon chains were seen as highly disordered, and the diffusion was seen at both areas, with a factor of about 2.5 increase from the smaller molecular area to the larger area. They report no evidence of a tendency for the chains to aggregate into ordered islands, so perhaps this work can be seen as a realistic computer simulation depiction of a monolayer in an LE state. [Pg.130]


See other pages where Molecular dynamics simulation liquid is mentioned: [Pg.136]    [Pg.862]    [Pg.1744]    [Pg.268]    [Pg.393]    [Pg.416]    [Pg.422]    [Pg.422]    [Pg.635]    [Pg.636]    [Pg.64]    [Pg.229]    [Pg.254]    [Pg.397]    [Pg.159]    [Pg.78]    [Pg.53]    [Pg.83]    [Pg.92]    [Pg.82]    [Pg.83]    [Pg.83]    [Pg.126]    [Pg.130]   
See also in sourсe #XX -- [ Pg.2 , Pg.18 , Pg.25 ]




SEARCH



Dynamic simulation

Dynamical simulations

Liquid dynamic

Liquid media molecular dynamics simulations

Liquid molecular dynamics

Liquids, simulation

Molecular Dynamics Simulation

Molecular dynamics simulation ionic liquids

Molecular dynamics simulation liquid water

Molecular liquids

Molecular simulations

© 2024 chempedia.info