Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular dynamics atomic interactions

Equation 8.25 gives the solution to the energy levels of the simple harmonic oscillator, a model for the vibrational mechanics of a chemical bond. This is only a model, however, and we know that it doesn t succeed under all conditions. Often in vibrational spectroscopy we look no further than the lowest excited state, V = 1, and in that case Eq. 8.25 is usually adequate. It predicts rather well, for example, how the transition energy depends on the atomic masses. However, detailed studies of molecular dynamics and interactions demand a more general approach to the vibrational Schrodinger equation. In this section, we look at how the harmonic oscillator model fails and what we can do about it. [Pg.364]

The method of molecular dynamics (MD), described earlier in this book, is a powerful approach for simulating the dynamics and predicting the rates of chemical reactions. In the MD approach most commonly used, the potential of interaction is specified between atoms participating in the reaction, and the time evolution of their positions is obtained by solving Hamilton s equations for the classical motions of the nuclei. Because MD simulations of etching reactions must include a significant number of atoms from the substrate as well as the gaseous etchant species, the calculations become computationally intensive, and the time scale of the simulation is limited to the... [Pg.2936]

Abstract. Molecular dynamics (MD) simulations of proteins provide descriptions of atomic motions, which allow to relate observable properties of proteins to microscopic processes. Unfortunately, such MD simulations require an enormous amount of computer time and, therefore, are limited to time scales of nanoseconds. We describe first a fast multiple time step structure adapted multipole method (FA-MUSAMM) to speed up the evaluation of the computationally most demanding Coulomb interactions in solvated protein models, secondly an application of this method aiming at a microscopic understanding of single molecule atomic force microscopy experiments, and, thirdly, a new method to predict slow conformational motions at microsecond time scales. [Pg.78]

Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient. Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient.
In an atomic level simulation, the bond stretch vibrations are usually the fastest motions in the molecular dynamics of biomolecules, so the evolution of the stretch vibration is taken as the reference propagator with the smallest time step. The nonbonded interactions, including van der Waals and electrostatic forces, are the slowest varying interactions, and a much larger time-step may be used. The bending, torsion and hydrogen-bonding forces are treated as intermediate time-scale interactions. [Pg.309]

Parallel molecular dynamics codes are distinguished by their methods of dividing the force evaluation workload among the processors (or nodes). The force evaluation is naturally divided into bonded terms, approximating the effects of covalent bonds and involving up to four nearby atoms, and pairwise nonbonded terms, which account for the electrostatic, dispersive, and electronic repulsion interactions between atoms that are not covalently bonded. The nonbonded forces involve interactions between all pairs of particles in the system and hence require time proportional to the square of the number of atoms. Even when neglected outside of a cutoff, nonbonded force evaluations represent the vast majority of work involved in a molecular dynamics simulation. [Pg.474]

Example If a drug molecule interacts with a receptor molecule through hydrogen bonds, then yon might restrain the distance between the donor and acceptor atoms involved in the hydrogen bonds. During a molecular dynamics simulation, these atoms would slay near an ideal value, while the rest of the molecular system fully relaxes. [Pg.83]

The first molecular dynamics simulations of a lipid bilayer which used an explicit representation of all the molecules was performed by van der Ploeg and Berendsen in 1982 [van dei Ploeg and Berendsen 1982]. Their simulation contained 32 decanoate molecules arranged in two layers of sixteen molecules each. Periodic boundary conditions were employed and a xmited atom force potential was used to model the interactions. The head groups were restrained using a harmonic potential of the form ... [Pg.415]

Molecular dynamics simulation, which provides the methodology for detailed microscopical modeling on the atomic scale, is a powerful and widely used tool in chemistry, physics, and materials science. This technique is a scheme for the study of the natural time evolution of the system that allows prediction of the static and dynamic properties of substances directly from the underlying interactions between the molecules. [Pg.39]

The concentration of salt in physiological systems is on the order of 150 mM, which corresponds to approximately 350 water molecules for each cation-anion pair. Eor this reason, investigations of salt effects in biological systems using detailed atomic models and molecular dynamic simulations become rapidly prohibitive, and mean-field treatments based on continuum electrostatics are advantageous. Such approximations, which were pioneered by Debye and Huckel [11], are valid at moderately low ionic concentration when core-core interactions between the mobile ions can be neglected. Briefly, the spatial density throughout the solvent is assumed to depend only on the local electrostatic poten-... [Pg.142]

Although the folding of short proteins has been simulated at the atomic level of detail [159,160], a simplified protein representation is often applied. Simplifications include using one or a few interaction centers per residue [161] as well as a lattice representation of a protein [162]. Some methods are hierarchical in that they begin with a simplified lattice representation and end up with an atomistic detailed molecular dynamics simulation [163]. [Pg.289]

Despite their simplicity, certainly compared to the all-atom potentials used in molecular dynamics studies, these contact energy functions enable the exploration of different interaction scenarios. This diversity is achieved by changing the heterogeneity of the sequence, by altering the number N of different types of residues that are being used. The most elementary lattice model involves only two types of monomers hydrophobic... [Pg.377]


See other pages where Molecular dynamics atomic interactions is mentioned: [Pg.283]    [Pg.732]    [Pg.593]    [Pg.467]    [Pg.595]    [Pg.902]    [Pg.2382]    [Pg.3]    [Pg.3]    [Pg.78]    [Pg.297]    [Pg.299]    [Pg.436]    [Pg.472]    [Pg.485]    [Pg.352]    [Pg.360]    [Pg.362]    [Pg.429]    [Pg.10]    [Pg.13]    [Pg.31]    [Pg.186]    [Pg.213]    [Pg.240]    [Pg.329]    [Pg.338]    [Pg.353]    [Pg.384]    [Pg.536]    [Pg.625]    [Pg.10]    [Pg.408]    [Pg.104]    [Pg.104]    [Pg.159]    [Pg.253]   
See also in sourсe #XX -- [ Pg.4 , Pg.5 ]




SEARCH



Atom dynamics

Atomic interactions

Atomic-molecular interaction

Dynamical interaction

Molecular dynamics interactions

Molecular interactions

Molecular interactive

© 2024 chempedia.info