Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Molecular catalytic activity

Sequences such as the above allow the formulation of rate laws but do not reveal molecular details such as the nature of the transition states involved. Molecular orbital analyses can help, as in Ref. 270 it is expected, for example, that increased strength of the metal—CO bond means decreased C=0 bond strength, which should facilitate process XVIII-55. The complexity of the situation is indicated in Fig. XVIII-24, however, which shows catalytic activity to go through a maximum with increasing heat of chemisorption of CO. Temperature-programmed reaction studies show the presence of more than one kind of site [99,1(K),283], and ESDIAD data show both the location and the orientation of adsorbed CO (on Pt) to vary with coverage [284]. [Pg.732]

The technological appHcations of molecular sieves are as varied as their chemical makeup. Heterogeneous catalysis and adsorption processes make extensive use of molecular sieves. The utility of the latter materials Hes in their microstmctures, which allow access to large internal surfaces, and cavities that enhance catalytic activity and adsorptive capacity. [Pg.443]

Enzymes are excellent catalysts for two reasons great specificity and high turnover rates. With but few exceptions, all reac tions in biological systems are catalyzed by enzymes, and each enzyme usually catalyzes only one reaction. For most of the important enzymes and other proteins, the amino-acid sequences and three-dimensional structures have been determined. When the molecular struc ture of an enzyme is known, a precise molecular weight could be used to state concentration in molar units. However, the amount is usually expressed in terms of catalytic activity because some of the enzyme may be denatured or otherwise inactive. An international unit (lU) of an enzyme is defined as the amount capable of producing one micromole of its reaction product in one minute under its optimal (or some defined) reaction conditions. Specific activity, the activity per unit mass, is an index of enzyme purity. [Pg.2149]

It may be necessary and possible to achieve a good Brf nsted relationship by adding another term to the equation, as Toney and Kirsch did in correlating the effects of various amines on the catalytic activity of a mutant enzyme. A simple Brf nsted plot failed, but a multiple linear regression on the variables pKa and molecular volume (of the amines) was successful. [Pg.349]

The turnover number of an enzyme, is a measure of its maximal catalytic activity, is defined as the number of substrate molecules converted into product per enzyme molecule per unit time when the enzyme is saturated with substrate. The turnover number is also referred to as the molecular activity of the enzyme. For the simple Michaelis-Menten reaction (14.9) under conditions of initial velocity measurements, Provided the concentration of... [Pg.438]

The serine residue of isocitrate dehydrogenase that is phos-phorylated by protein kinase lies within the active site of the enzyme. This situation contrasts with most other examples of covalent modification by protein phosphorylation, where the phosphorylation occurs at a site remote from the active site. What direct effect do you think such active-site phosphorylation might have on the catalytic activity of isocitrate dehydrogenase (See Barford, D., 1991. Molecular mechanisms for the control of enzymic activity by protein phosphorylation. Bioehimiea et Biophysiea Acta 1133 55-62.)... [Pg.672]

More important than the mechanism by which die tertiary amine catalysts function is how their molecular structure influences catalytic activity and selectivity... [Pg.228]

Due to its electronic conductivity, polypyrrole can be grown to considerable thickness. It also constitutes, by itself, as a film on platinum or gold, a new type of electrode surface that exhibits catalytic activity in the electrochemical oxidation of ascorbic acid and dopamine in the reversible redox reactions of hydroquinones and the reduction of molecular oxygen iV-substituted pyrroles are excellent... [Pg.57]

A porphinatoaluminum alkoxide is reported to be a superior initiator of c-caprolactone polymerization (44,45). A living polymer with a narrow molecular weight distribution (M /Mjj = 1.08) is ob-tmned under conditions of high conversion, in part because steric hindrance at the catalyst site reduces intra- and intermolecular transesterification. Treatment with alcohols does not quench the catalytic activity although methanol serves as a coinitiator in the presence of the aluminum species. The immortal nature of the system has been demonstrated by preparation of an AB block copolymer with ethylene oxide. The order of reactivity is e-lactone > p-lactone. [Pg.78]

Three different ways in which a zeolite membrane can contribute to a better sensor performance can be distinguished (i) the add-on selective adsorption or molecular sieving layer to the sensor improves selectivity and sensitivity, (ii) the zeolite layer acts as active sensing material and adds the selective adsorption and molecular sieving properties to this, and (iii) the zeohte membrane adds a catalytically active layer to the sensor, improving the selectivity by specific reactions. [Pg.227]

The search for better catalysts has been facilitated in recent years by molecular modeling. We are seeing here a step change. This is the subject of Chapter 1 (Molecular Catalytic Kinetics Concepts). New types of catalysts appeared to be more selective and active than conventional ones. Tuned mesoporous catalysts, gold catalysts, and metal organic frameworks (MOFs) that are discussed in Chapter 2 (Hierarchical Porous Zeolites by Demetallation, 3 (Preparation of Nanosized Gold Catalysts and Oxidation at Room Temperature), and 4 (The Fascinating Structure... [Pg.389]

Solutions of surfactant-stabilized nanogels share both the advantage of gels (drastic reduction of molecular diffusion and of internal dynamics of solubilizates entrapped in the micellar aggregates) and of nonviscous liquids (nanogel-containing reversed micelles diffuse and are dispersed in a macroscopicaUy nonviscous medium). Effects on the lifetime of excited species and on the catalytic activity and stability of immobilized enzymes can be expected. [Pg.493]

Preparation and catalytic activity of H3PM012O40 catalyst molecularly immobilized on polystyrene support... [Pg.297]


See other pages where Molecular catalytic activity is mentioned: [Pg.26]    [Pg.1056]    [Pg.1111]    [Pg.26]    [Pg.1056]    [Pg.1111]    [Pg.2482]    [Pg.499]    [Pg.328]    [Pg.535]    [Pg.310]    [Pg.376]    [Pg.466]    [Pg.97]    [Pg.251]    [Pg.254]    [Pg.277]    [Pg.565]    [Pg.192]    [Pg.275]    [Pg.281]    [Pg.505]    [Pg.813]    [Pg.865]    [Pg.886]    [Pg.139]    [Pg.116]    [Pg.83]    [Pg.8]    [Pg.411]    [Pg.335]    [Pg.335]    [Pg.83]    [Pg.202]    [Pg.455]    [Pg.99]    [Pg.265]    [Pg.299]    [Pg.300]    [Pg.785]    [Pg.853]   
See also in sourсe #XX -- [ Pg.437 ]




SEARCH



Molecular activity

Molecular catalysts designing, with catalytically active species

© 2024 chempedia.info