Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modem valence bond

T orbital for benzene obtained from spin-coupled valence bond theory. (Figure redrawn from Gerratt ], D L oer, P B Karadakov and M Raimondi 1997. Modem valence bond theory. Chemical Society Reviews 87 100.) figure also shows the two Kekule and three Dewar benzene forms which contribute to the overall wavefunction Kekuleform contributes approximately 40.5% and each Dewar form approximately 6.4%. [Pg.146]

Gerratt J, D L Cooper, P B Karadakov and M Raimondi 1997. Modem Valence Bond Theory. Chemical Society Reviews pp. 87-100. [Pg.181]

Several methods of quantitative description of molecular structure based on the concepts of valence bond theory have been developed. These methods employ orbitals similar to localized valence bond orbitals, but permitting modest delocalization. These orbitals allow many fewer structures to be considered and remove the need for incorporating many ionic structures, in agreement with chemical intuition. To date, these methods have not been as widely applied in organic chemistry as MO calculations. They have, however, been successfully applied to fundamental structural issues. For example, successful quantitative treatments of the structure and energy of benzene and its heterocyclic analogs have been developed. It remains to be seen whether computations based on DFT and modem valence bond theory will come to rival the widely used MO programs in analysis and interpretation of stmcture and reactivity. [Pg.65]

Cooper, D.L., Gerratt, J. and Raimondi, M. (1987) Modem valence bond theory, Advances Chem. [Pg.124]

Modem valence bond (VB) theories such as Spin-Coupled theory, together with DFT and Molller-Plesset MO methods, and ab initio molecular dynamics, were employed to study structure/dynamics in representative carbonium ions. [Pg.310]

We discuss all of the key features of our current CASVB methodology for modem valence bond calculations on ground and excited states. The CASVB strategy may be used to generate compact representations of CASSCF wavefunctions or, alternatively, to perform the fully-variational optimization of various general types ofVB wavefunction. We report also a new application, namely to the fourteen % electrons of a planar dimethylenecyclobu-tadiene chain with three rings. [Pg.303]

An Overview of the CASVB Approach to Modem Valence Bond Calculations... [Pg.305]

A natural starting point for modem valence bond applications lies in the optimization of the spin-coupled wavefunction [28], which consists of a single covalent configuration of N singly occupied orbitals ... [Pg.306]

We consider in the following the optimization of modem valence bond wavefunctions for states that are second or higher within a particular symmetry. If CASSCF solutions... [Pg.313]

We focus in this Section on particular aspects relating to the direct interpretation of valence bond wavefunctions. Important features of a description in terms of modem valence bond concepts include the orbital shapes (including their overlap integrals) and estimates of the relative importance of the different stmctures (and modes of spin coupling) in the VB wavefunction. We address here the particular question of defining nonorthogonal weights, as well as certain aspects of spin correlation analysis. [Pg.316]

The combination of modem valence bond theory, in its spin-coupled (SC) form, and intrinsic reaction coordinate calculations utilizing a complete-active-space self-consistent field (CASSCF) wavefunction, is demonstrated to provide quantitative and yet very easy-to-visualize models for the electronic mechanisms of three gas-phase six-electron pericyclic reactions, namely the Diels-Alder reaction between butadiene and ethene, the 1,3-dipolar cycloaddition of fulminic acid to ethyne, and the disrotatory electrocyclic ringopening of cyclohexadiene. [Pg.327]

As is well-known, modem valence-bond (VB) theory in its spin-coupled (SC) form (for a recent review, see Ref. 7) provides an alternative description of benzene [8-10] which, in qualitative terms, is no less convincing and is arguably even more intuitive than the MO picture with delocalized orbitals. The six n electrons are accommodated within a single product of six nonorthogonal orbitals, the spins of which are coupled in all five possible ways that lead to an overall six-electron singlet. The simultaneous optimization of the orbitals and of the weights of the five six-electron singlet spin... [Pg.328]

Modem Valence-Bond Description of the Mechanisms of Six-Electron Pericyclic Reactions... [Pg.329]


See other pages where Modem valence bond is mentioned: [Pg.83]    [Pg.12]    [Pg.312]    [Pg.309]    [Pg.324]    [Pg.309]   
See also in sourсe #XX -- [ Pg.303 , Pg.327 ]

See also in sourсe #XX -- [ Pg.303 , Pg.327 ]

See also in sourсe #XX -- [ Pg.303 , Pg.327 ]




SEARCH



Modem

© 2024 chempedia.info