Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modeling olefin yield

Several studies characterizing the reactions of alkenyl radicals with quinone dumines and quino-neimines were published in the late 1970s. Quinone dumines react with allylic radicals yielding both the reduced PPD and the alkylated product. In these experiments 2-methyl-2-pentene served as a model olefin (model for NR). Samples of the olefin and quinoneimines or quinone diimine were heated to 140°C. Isolation and analysis of products demonstrated that 40%-70% of the imine or diimine was reduced to the corresponding PPD, while 20%-50% was isolated as the alkylated product. This alkylation reaction (via an allylic radical) represents the pathway to the formation of rubber-bound antidegradant. ... [Pg.489]

SILC was also used without covalently anchoring the ionic liquid fragment to the silica support. In this case, [bmim][PF6] was simply added to silica in acetone together with the catalyst. [Rh(norbornadiene)(PPh3)2]PF6 and the solvent evaporated to yield the supported catalyst-philic phase. Catalyst evaluation on the hydrogenation of model olefins showed enhanced activity in comparison to homogeneous and biphasic reaction systems, in analogy to Davis s observations. Also... [Pg.140]

Oxidation of Tetramethylethylene. Tetramethylethylene, TME, was an excellent model olefin since it was rapidly and selectively oxidized in the presence of many transition metal complexes (12). Oxidation of TME in the presence of the group VIII metal complexes [MCI(CO)-(Ph3P)2] (M = Rh, Ir) at 50°C gave two major products 2,3-dimethyl-2,3-epoxybutane, I, and 2,3-dimethyl-3-hydroxy-l-butene, II (Reaction 5). Reaction mixtures were homogeneous with no observable deposits of insoluble materials. Little oxidation occurred under these conditions in the absence of the metal complexes, but low yields of I and II were obtained in the presence of a radical initiator (Table I). Reactions were severely inhibited by hydroquinone. The ruthenium (II) complex, [RuCl2(Ph3P)3]2, also promoted efficient oxidation of TME yielding I... [Pg.76]

The last contribution quoted in this section is a phosphine-free hydroformylation process based on a liquid triphasic system consisting of isooctane, water and trioctylmethylammonium chloride (TOMAC). The hydroformylation of model olefins required neat RhCls only as catalyst precursor. In the triphasic system, the catalyst is confined in the TOMAC phase, likely in the form of an ion pair. Products are obtained in excellent yields (> 90% at 80 °C) and high regioselectivity (>98%) in favour of the branched aldehyde in the case of styrene, while the exo isomer was obtained in >90% selectivity in the case of norbornene. The products were easily removed and the catalyst was recycled several times, with no leaching of rhodium into the organic phase. [Pg.37]

Recycles are meticulously accounted for because they load equipment and draw utilities. An olefin plant sustaining relatively low conversion per pass often builds up large amounts of unreacted feed that is recycled to the steam crackers. With utilities charged to ultimate products, these recycles would seem to the model to be free. The model would likely opt for very low conversion, which usually gives high ultimate yield and saves feedstock. Assigning the utility costs to users causes the compressor to pay for the extra recycle and the model raises conversion to the true optimum value. [Pg.347]

As an example heme-models have been reported to catalyze the epoxidation of olefins to the corresponding epoxides in good yield [16, 17]. In particular, [Fe TPP)Cl] (TPP = 5,10,15,20-meso-tetraphenylporphyrin) was reported to oxidize naturally occurring propenylbenzenes to the corresponding epoxides up to 98% selectivity (conversion 98%) using H2O2 as oxidant [16]. The major drawback... [Pg.84]

With this encouraging result from the model system, a gram quantity of the racemic sulfoxide 40 was prepared by oxidation of benzoxathiin 16 with mCPBA and a small amount of chiral sulfoxide (A)-40 with 94% ee was isolated by subsequent chiral HPLC separation (Scheme 5.12). When chiral sulfoxide (S)-40 was treated with borane-dimethylsulfide, a clean reduction of the olefin and the sulfoxide was observed. More surprisingly, only the desired cis-diaryl dihydrobenzoxathiin 12 was observed in high yield and unchanged 94% ee. No trans-isomer or 16 was observed. With this proof of concept in hand, an efficient... [Pg.153]

That the high degree of torsional and other types of strain inherent in the triplet states or trans conformers of cyclohexene and cycloheptene may be responsible for their photochemical behavior is suggested by the reactions of compound (50), a moderately twisted olefin according to molecular models. Compound (50) quantitatively yields bicyclo[3.3.1]non-l-yl acetate (51) within 15 sec after being dissolved in glacial acetic acid(83> ... [Pg.268]

The present economic and environmental incentives for the development of a viable one-step process for MIBK production provide an excellent opportunity for the application of catalytic distillation (CD) technology. Here, the use of CD technology for the synthesis of MIBK from acetone is described and recent progress on this process development is reported. Specifically, the results of a study on the liquid phase kinetics of the liquid phase hydrogenation of mesityl oxide (MO) in acetone are presented. Our preliminary spectroscopic results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups coordinated to the catalyst. An empirical kinetic model was developed which will be incorporated into our three-phase non-equilibrium rate-based model for the simulation of yield and selectivity for the one step synthesis of MIBK via CD. [Pg.261]

In contrast to kinetic models reported previously in the literature (18,19) where MO was assumed to adsorb at a single site, our preliminary data based on DRIFT results suggest that MO exists as a diadsorbed species with both the carbonyl and olefin groups being coordinated to the catalyst. This diadsorption mode for a-p unsaturated ketones and aldehydes on palladium have been previously suggested based on quantum chemical predictions (20). A two parameter empirical model (equation 4) where - rA refers to the rate of hydrogenation of MO, CA and PH refer to the concentration of MO and the hydrogen partial pressure respectively was developed. This rate expression will be incorporated in our rate-based three-phase non-equilibrium model to predict the yield and selectivity for the production of MIBK from acetone via CD. [Pg.265]

To form the process model, regression analysis was carried out. The alkylate yield x4 was a function of the olefin feed xx and the external isobutane-to-olefin ratio jc8. The relationship determined by nonlinear regression holding the reactor temperatures between 80-90°F and the reactor acid strength by weight percent at 85-93 was... [Pg.492]

The correlation between bulky substituents and stereoselectivity is graphically shown in Figure 3, depicting the possible transition states in the dihydroxylation of a monosubstituted olefin by osmium tetroxide derivatives. This reaction is known to be selective [54], and the selectivity depends on whether the olefin substituent takes a position of type A or B in the transition state. The problem with calculations on a model system where the bulky base is replaced by NH3 is that the positions A and B are completely symmetrical, and thus, they yield the same energy. In other words, the reaction would not be selective with this model system. [Pg.12]

The interaction between olefin and catalytic complex can be investigated according to the above model by rotating the olefin around the axis joining the middle of the double bond with the metal atom. It appears that the (a) position is favored over the (b) position. The hydrogen would preferentially attack the re face of the carbon atom 2 and the carbon monoxide the si face of the carbon atom 3, yielding preferentially the (S) -2-methylbutanal. [Pg.323]


See other pages where Modeling olefin yield is mentioned: [Pg.443]    [Pg.90]    [Pg.443]    [Pg.55]    [Pg.46]    [Pg.470]    [Pg.191]    [Pg.443]    [Pg.171]    [Pg.696]    [Pg.447]    [Pg.111]    [Pg.91]    [Pg.361]    [Pg.105]    [Pg.292]    [Pg.118]    [Pg.303]    [Pg.34]    [Pg.233]    [Pg.188]    [Pg.113]    [Pg.32]    [Pg.117]    [Pg.127]    [Pg.280]    [Pg.220]    [Pg.224]    [Pg.214]    [Pg.623]    [Pg.160]    [Pg.239]    [Pg.127]    [Pg.142]    [Pg.193]    [Pg.366]    [Pg.535]    [Pg.2487]   
See also in sourсe #XX -- [ Pg.189 , Pg.190 ]




SEARCH



Yield modeling

© 2024 chempedia.info