Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microfiltration definition

In all of the above equations, is assumed to be constant and uniform throughout the flow field. In most items of bioprocess equipment, however, there is a spatial distribution of energy dissipation. The definition of an average or a maximum energy dissipation rate is notoriously difficult in the case of bioprocess equipment such as high pressure homogenisers, centrifuges, pumps and microfiltration units which all have complex flow fields. [Pg.99]

In this chapter, we will introduce fundamental concepts of the membrane and membrane-separation processes, such as membrane definition, membrane classification, membrane formation, module configuration, transport mechanism, system design, and cost evaluation. Four widely used membrane separation processes in water and wastewater treatment, namely, microfiltration (MF), ultrafiltration (UF), nanofiltrafion (NF), and reverse osmosis (RO), will be discussed in detail. The issue of membrane foufing together with its solutions will be addressed. Several examples will be given to illustrate the processes. [Pg.204]

Vapor permeation and pervaporation are membrane separation processes that employ dense, non-porous membranes for the selective separation of dilute solutes from a vapor or liquid bulk, respectively, into a solute-enriched vapor phase. The separation concept of vapor permeation and pervaporation is based on the molecular interaction between the feed components and the dense membrane, unlike some pressure-driven membrane processes such as microfiltration, whose general separation mechanism is primarily based on size-exclusion. Hence, the membrane serves as a selective transport barrier during the permeation of solutes from the feed (upstream) phase to the downstream phase and, in this way, possesses an additional selectivity (permselectivity) compared to evaporative techniques, such as distillation (see Chapter 3.1). This is an advantage when, for example, a feed stream consists of an azeotrope that, by definition, caimot be further separated by distillation. Introducing a permselective membrane barrier through which separation is controlled by solute-membrane interactions rather than those dominating the vapor-liquid equilibrium, such an evaporative separation problem can be overcome without the need for external aids such as entrainers. The most common example for such an application is the dehydration of ethanol. [Pg.271]

Further distinction has to be made between conventional filtration of fine particle less than 10 pm in diameter, and microfiltration. It would be unusual for the filtration of such particles on a conventional fiher cloth to be described as ndcrofiltratian. Thus microfihration is constituted by the filtration of small particles and by the medimn which is used for the filtration. Conventional fihration is undertaken on filter cloths with a very open structure, see Chapter 4, whereas membrane fihration is usua% concerned with fihration enq>loying membrane media where the equivalent pore size is of the order of 10 pm, or less. These definitions are, however, becoming less distinct as it is now possible to obtain conventional fihration equ ment employing membrane-type fiher media, as discussed in Chapter 4, and crossflow microfilters enqploying conventional filter cloth. [Pg.359]

This implies that microfiltration membranes are porous media containing macropores and ultrafiltration membranes are also porous with mesopores in the top layer. Hence, the definition porous covers both the macropores and mesopores. With membranes of these type it is not the membrane (material) which is characterised but the pores in the membrane. Here the pore size (and pore size distribution) mainly determines which particles or molecules are retained and which will pass through the membrane. Hence, the material is of little importance in determining the separation performance. On the other hand, with dense pervaporation/gas separation membranes, no fixed pores are present and now the material itself mainly determines the performance. [Pg.159]

The retained components, the ones to which the medium is impermeable, may be particles of solid, droplets of liquid, colloidal material, or molecular or ionic species in solution, while the permeate (or filtrate) will normally be the suspending fluid or solvent, possibly together with some of the other components. (Note this definition includes the diffusion processes of reverse osmosis and nanofiltration, which are not strictly filtration processes, because of their similarity to membrane ultrafiltration and microfiltration, which are.)... [Pg.41]


See other pages where Microfiltration definition is mentioned: [Pg.190]    [Pg.825]    [Pg.157]    [Pg.257]   
See also in sourсe #XX -- [ Pg.4041 ]




SEARCH



Microfiltration

© 2024 chempedia.info