Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelles explained

These results can be extended to other Diels-Alder reactions. In view of the stmctures of most dienes and dienophiles a spatial separation of these compounds upon binding to micelles can be expected for the majority of Diels-Alder reactions. This arrangement most likely explains the unexpectedly small influence of micelles on the rates of Diels-Alder reactions as reported in the literature. [Pg.178]

Radicals generated from water-soluble initiator might not enter a micelle (14) because of differences in surface-charge density. It is postulated that radical entry is preceded by some polymerization of the monomer in the aqueous phase. The very short oligomer chains are less soluble in the aqueous phase and readily enter the micelles. Other theories exist to explain how water-soluble radicals enter micelles (15). The micelles are presumed to be the principal locus of particle nucleation (16) because of the large surface area of micelles relative to the monomer droplets. [Pg.23]

Beyond the CMC, surfactants which are added to the solution thus form micelles which are in equilibrium with the free surfactants. This explains why Xi and level off at that concentration. Note that even though it is called critical, the CMC is not related to a phase transition. Therefore, it is not defined unambiguously. In the simulations, some authors identify it with the concentration where more than half of the surfactants are assembled into aggregates [114] others determine the intersection point of linear fits to the low concentration and the high concentration regime, either plotting the free surfactant concentration vs the total surfactant concentration [115], or plotting the surfactant chemical potential vs ln( ) [119]. [Pg.652]

Clearly Fig. 7 must actually have a maximum at high asymmetry since this corresponds to negligible anchor block size and therefore to no adsorption (ct = 0). The lattice theory of Evers et al. predicts this quantitatively [78] and is, on preliminary examination, also able to explain some aspects of these data. From these data, the deviation from power law behavior occurs at a number density of chains where the number of segments in the PVP blocks are insufficient to cover the surface completely, making the idea of a continuous wetting anchor layer untenable. Discontinuous adsorbed layers and surface micelles have been studied theoretically but to date have not been directly observed experimentally [79]. [Pg.52]

No version of micellar entry theory has been proposed, which is able to explain the experimentally observed leveling off of the particle number at high and low surfactant concentrations where micelles do not even exist. There is a number of additional experimental data that refute micellar entry such as the positively skewed early time particle size distribution (22.), and the formation of Liesegang rings (30). Therefore it is inappropriate to include micellar entry as a particle formation mechanism in EPM until there is sufficient evidence to do so. [Pg.375]

Another mechanism postulated to explain the conductometric behavior of these microemulsions attributes it to the transfer of sodium counterions from a reversed micelle to another through water channels opened by intermicellar coalescence [255-258],... [Pg.495]

In some polysaccharides, the reducing terminal is linked, through a phosphoric diester linkage, to O-1 of a 2,3-di-6 -acylglycerol. This structural feature has been demonstrated for some capsular polysaccharides from E. coli and Neisseria species, - but is probably more common than that. Non-covalent linkage between the lipid part and the cell membrane may explain why extracellular polysaccharides often occur as capsules, and the high (apparent) molecular weight observed for these polysaccharides may be due to micelle formation in aqueous solution. [Pg.315]

C12-0029. Write a paragraph that describes the types of substances that form monolayers, micelles, and vesicles in water. Explain the differences among these structures. [Pg.879]

The popularity of reversed-phase liquid chromatography (RPC) is easily explained by its unmatched simplicity, versatility and scope [15,22,50,52,71,149,288-290]. Neutral and ionic solutes can be separated simultaneously and the rapid equilibration of the stationary phase with changes in mobile phase composition allows gradient elution techniques to be used routinely. Secondary chemical equilibria, such as ion suppression, ion-pair formation, metal complexatlon, and micelle formation are easily exploited in RPC to optimize separation selectivity and to augment changes availaple from varying the mobile phase solvent composition. Retention in RPC, at least in the accepted ideal sense, occurs by non-specific hydrophobic interactions of the solute with the... [Pg.202]

As suggested above, the main recovery mechanism of surfactants retained in the rock can be interpreted as a micellization phenomenon inside the pores. Upon contact with micelles from the desorbent agent, the adsorbed surfactants are solubilized in the form of mixed micelles. This also explains the effectiveness of the desorbent still observed at low concentration (0.27% in Test 3 in Table in, concentration much higher than the CMC of NP 30 EO equal to 0.016%). [Pg.288]

To explain the behavior of the meso- and ( )-diazenes upon micellization, the differences in the molecular structures and the aggregates they form must both be examined since either (or both) may be responsible for the anomaly. [Pg.110]

Although the dipolar and resonating nature of the interaction of amylose and iodine is well established, Schlamowitz173 regards the iodine in a starch complex as being in a predominantly non-polar form, and Meyer and Bern-feld174 refute the helix theory and consider that adsorption of iodine occurs on colloidal micelles in amylose solutions. Most of the experimental facts which Meyer presents can, however, be satisfactorily explained on the helical model. [Pg.369]

The structure of the micelles remains an object of study and controversy. A series of models has been proposed that attempt to explain the experimental evidence. In this study the chronological order of publication of the four most important models has been considered. [Pg.290]

The models of Fromherz and Dill allow the solubilization of hydrophobic solutes near the surface of the micelle and explain how these solutes (in addition to part of the hydrocarbon chains of the surfactants) can be in contact with the water when they are associated with the micelle. However, the debate concerning the structure of the clusters is not yet finished and research on the subject continues. [Pg.292]

The CL enhancement of the lucigenin reaction with catecholamines in the presence of HTAH micelles was used for determination of dopamine, norepinephrine, and epinephrine [42], However, the presence of an anionic surfactant, SDS, inhibits the CL of the system. The aforementioned CL enhancement in the presence of HTAH can be explained in the following way the deprotonated forms of the catecholamines are expected to be the principal species present in aqueous alkaline solution due to the dissociation of the catechol hydroxyl groups, and to react with lucigenin to produce CL. The anionic form of the catecholamines and the hydroxide ion interact electrostatically with and bond to the cationic micelle, to which the lucigenin also bonds. Therefore, the effective concentration of the... [Pg.299]

One of the nonionic surfactants most used as an enhancer of chemiluminescent reactions is Brij-35. This surfactant increases the reaction of lucigenin with catecholamines by a factor of 2.6 compared with the CL intensity in an aqueous medium [42], This enhancement can be explained in the following way it is known that oxygen from the polyoxyethylene chains in Brij-35 can react with sodium ion to form an oxonium ion, by which means the polyoxyethylene chains act as an oxonium cation. In this way the increase in CL intensity due to Brij-35 can be attributed to the same effect described for the micelles of a cationic surfactant. [Pg.305]

A small increase of the molar mass during the copolymerization [115] is explained by an incorporation of not yet initiated micelles or droplets of the microemulsion in the growing microgels or by their aggregation to larger particles. [Pg.171]

By combining (1), (3) and (4), expressions (5) and (6) are obtained. These, or similar, equations readily explain why first-order rate constants of micelle-assisted bimolecular reactions typically go through maxima with increasing surfactant concentration if the overall reactant concentration is kept constant. Addition of surfactant leads to binding of both reactants to micelles, and this increased concentration increases the reaction rate. Eventually, however, increase in surfactant concentration dilutes the reactants in the micellar pseudophase and the rate falls. This behavior supports the original assumption that substrate in one micelle does not react with reactant in another, and that equilibrium is maintained between aqueous and micellar pseudophases. [Pg.225]


See other pages where Micelles explained is mentioned: [Pg.145]    [Pg.335]    [Pg.253]    [Pg.340]    [Pg.145]    [Pg.335]    [Pg.253]    [Pg.340]    [Pg.145]    [Pg.48]    [Pg.341]    [Pg.534]    [Pg.190]    [Pg.198]    [Pg.9]    [Pg.161]    [Pg.89]    [Pg.52]    [Pg.130]    [Pg.235]    [Pg.236]    [Pg.236]    [Pg.242]    [Pg.160]    [Pg.117]    [Pg.201]    [Pg.196]    [Pg.67]    [Pg.383]    [Pg.57]    [Pg.297]    [Pg.297]    [Pg.110]    [Pg.294]    [Pg.166]    [Pg.100]    [Pg.236]   
See also in sourсe #XX -- [ Pg.163 ]




SEARCH



Explained

© 2024 chempedia.info